

HAIL DAMAGED HVAC REPLACEMENT PROJECT

AT

BROOKENS ADMINISTRATIVE CENTER 1776 EAST WASHINGTON STREET URBANA, ILLINOIS

FOR

COUNTY OF CHAMPAIGN URBANA, ILLINOIS 61802

PROJECT MANUAL ITB #2021-004

May 5, 2021

TABLE OF CONTENTS

<u>DIVISION 00 – PROCUREMENT AND CONTRACTING REQUIREMENTS</u>

00 0200	NOTICE TO BIDDERS
00 1116	INVITATION TO BID
00 2213	SUPPLEMENTARY INSTRUCTIONS TO BIDDERS
00 3119	EXISTING CONDITION INFORMATION
00 3250	MINORITY AND FEMALE BUSINESS ENTERPRISE
00 4105	MINORITY/FEMALE BUSINESS ENTERPRISE PROGRAM REQUIREMENTS
00 4113	BID FORM – STIPULATED SUM (SINGLE-PRIME CONTRACT)
00 4313	BID SECURITY FORMS

DIVISION 01 – GENERAL REQUIREMENTS

01 1000	SUMMARY
01 2000	PRICE AND PAYMENT PROCEDURES
01 2500	SUBSTITION PROCEDURES
01 2500a	SUBSTITITION REQUEST FORM
01 2600	CONTRACTOR MODIFICATION PROCEDURES
01 3000	ADMINISTRATIVE REQUIREMENTS
01 4000	QUALITY REQUIREMENTS
01 6000	PRODUCT REQUIREMENTS
01 7000	EXECUTION AND CLOSEOUT REQUIREMENTS
01 7419	CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL

DIVISION 23 – HEATING, VENTILATING AND AIR CONDITIONING

23 0510	HEATING, VENTILATING AND AIR CONDITIONING
23 0593	PIPING AND AIR SYSTEMS TESTING, ADJUSTING AND BALANCING
23 0700	HVAC INSULATION
23 0900	HVAC INSTRUMENTATION AND CONTROLS
23 3113	METAL DUCTS
23 6200	PACKAGED COMPRESSOR AND CONDENSING UNITS
23 8500	AIR HANDLING

DIVISION 26 – ELECTRICAL

26 0500	COMMON WORK RESULTS FOR ELECTRICAL
26 0519	LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
26 0526	GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
26 0529	HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

26 0533	RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS
26 0544	SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING
26 0553	IDENTIFICATION FOR ELECTRICAL SYSTEMS
26 2726	WIRING DEVICES
26 2813	FUSES
26 2816	ENCLOSED SWITCHES AND CIRCUIT BREAKERS
26 2913.03	MANUAL AND MAGNETIC MOTOR CONTROLLERS

DIVISION 27 - COMMUNICATIONS

27 0528	PATHWAYS FOR COMMUNICATIONS SYSTEMS
27 1500	COMMUNICATIONS HORIZONTAL CABLING

INDEX OF DRAWINGS

C-100: COVER SHEET

M-100: BROOKENS POD 100 HVAC ROOF PLAN M-101: BROOKENS POD 200 HVAC ROOF PLAN M-102: BROOKENS POD 300 HVAC ROOF PLAN M-103: BROOKENS POD 400 HVAC ROOF PLAN

M-104: JUVENILE DETENTION CENTER HVAC ROOF PLAN

M-105: CHAMPAIGN COUNTY COURTHOUSE HVAC ROOF PLAN

M-106: METCAD HVAC ROOF PLAN

END OF TABLE OF CONTENTS 00 0100

May 5, 2021

BID: County of Champaign, Illinois

Hail Damaged HVAC Replacement Project

Friday, June 4, 2021
1:00 P.M., Public Opening
Lyle Shields Conference Room
Brookens Administrative Center

1776 East Washington Urbana, Illinois 61802-4581

Dear Bidder:

The County of Champaign is inviting the submission of sealed bids for the Hail Damaged HVAC Replacement Project at Brookens Administrative Center, 1776 East Washington, Urbana, IL 61802.

Specifications are prepared with the intent of offering equal opportunity to all bidders. No oral interpretations will be given to any bidder as to the meaning of the specifications. Requests for clarification must be submitted **in writing** via mail, fax or email to:

GHR Engineers and Associates, Inc.

Attn.: Richard Van Note 1615 South Neil Street Champaign, IL 61820 Fax: (217) 356-1092

Email: rvannote@ghrinc.com

Clarification requests must be received no later than Wednesday, May 28, 2021, 12:00 pm noon to be considered.

Pursuant to the Illinois Prevailing Wage Act (820 ILCS 130/1 et seq.), not less than the prevailing rate of wages as determined by the Illinois Department of Labor, County of Champaign, or court on review shall be paid by the vendor/contractor to all laborers, workers and mechanics performing work under this purchase order.

All bids are to be sealed and in the hands of the undersigned by the due date and time stated above, at which time bids will be publicly opened. There will be no bids accepted after said date and time. Your bid is to be submitted on the bid form provided. The envelope containing your bid is to be sealed and marked in the lower left-hand corner: "Sealed Bid: Hail Damaged HVAC Replacement Project". Bids will not be accepted by FAX mail.

The Champaign County Board reserves the right to reject any or all bids, to accept the bids, or to waive any irregularities should it deem to be in the best interest of the County of Champaign to do so. The bids will be awarded to the lowest responsible bidder meeting specifications as determined by the Champaign County Board.

Sincerely,

Dana Brenner Facilities Director

END OF NOTICE TO BIDDERS 00 0200

DOCUMENT 00 1116 - INVITATION TO BID - #2021-004

1.1 PROJECT INFORMATION

- A. Notice to Bidders: Qualified bidders are invited to submit bids for Project as described in this Document.
- B. Project Identification:

Hail Damaged HVAC Replacement Project

1. Project Location:

Brookens Administrative Center 1776 East Washington Street Urbana, IL 61802

- C. Owner: County of Champaign
 - 1. Owner's Representative:

Dana Brenner, Facilities Director

1776 East Washington Urbana, IL 61802-4581 Phone: (217) 384-3765 Fax: (217) 384-3896

Email: dbrenner@co-champaign.il.us

- D. Project Design Team: GHR Engineers and Associates, Inc.
- E. Project Description:
 - 1. Base Bid: Project consists of replacement of hail damaged rooftop equipment at numerous Champaign County buildings.
- F. Construction Contract: Bids will be received for the following Work:

Mechanical Contract.

1.2 BID SUBMITTAL AND OPENING

A. Owner will receive sealed bids until the bid time and date at the location indicated below. Owner will consider bids prepared in compliance with the Contract Documents issued by Owner, and delivered as follows:

Bid Date: Friday, June 4, 2021.
 Bid Time: 1:00 p.m., local time.

Location:

Lyle Shields Conference Room Brookens Administration Center 1776 East Washington Urbana, IL 61802

B. Bids will be thereafter opened in the presence of the bidders and read aloud.

1.3 BID SECURITY

A. Bid security in the form of a bank draft/cashier's check, certified check, U.S. money order, or bid bond payable to County of Champaign shall be submitted with each bid in the amount of ten (10) percent of the bid amount. No bids may be withdrawn for a period of sixty (60) days after opening of bids. Owner reserves the right to reject any and all bids and to waive informalities and irregularities.

1.4 PREBID CONFERENCE / SITE VISIT

- A. A prebid conference for all bidders will be held at Lyle Shields Conference Room, Brookens Administration Center, 1776 East Washington, Urbana, Illinois on Friday, May 21, 2021 at 1:00 pm, local time. Meet at front entrance.
- B. Building access for additional site visits may be made by contacting Owner's Representative.

Dana Brenner, Facilities Director

Phone: 217-384-3765 Fax: 217-384-3896

E-mail: dbrenner@co-champaign.il.us

1.5 DOCUMENTS

A. Documents can be procured by emailing Shannon Hicks, shicks@ghrinc.com. Al documents will be in pdf form by email only.

1.6 TIME OF COMPLETION

- A. Bidders shall begin the Work on receipt of the Notice to Proceed and shall complete the Work within the Contract Time.
 - 1. Anticipated Award of Contract: Board Meeting, Thursday, June 24, 2021.
 - 2. Anticipated Letter of Notice of Award: On or about Wednesday, July 2, 2021.
 - 3. Pre-Construction/Pre-Installation Meeting: TBD.
 - 4. Substantial Completion: Friday, November 12, 2021.
 - 5. Punch List: Issued on or about Tuesday, November 16, 2021.
 - 6. Final Completion: Tuesday, November 30, 2021.

1.7 BIDDER'S QUALIFICATIONS

A. Bidders must be properly licensed under the laws governing their respective trades and be able to obtain insurance and bonds required for the Work. A Performance Bond, a separate Labor and Material Payment Bond, and Insurance in a form acceptable to Owner will be required of the successful Bidder.

END OF DOCUMENT 00 1116

DOCUMENT 00 2213 - SUPPLEMENTARY INSTRUCTIONS TO BIDDERS

1.1 SUPPLEMENTARY INSTRUCTIONS TO BIDDERS - BIDDER'S REPRESENTATIONS

- A. The Bidder has investigated all required fees, permits, and regulatory requirements of authorities having jurisdiction and has properly included in the submitted bid the cost of such fees, permits, and requirements not otherwise indicated as provided by Owner.
 - 1. Permit Application: Complete building permit application and file with authorities having jurisdiction within five days of the Notice of Ward.
- B. The Bidder is a properly licensed Contractor according to the laws and regulations of The State of Illinois and meets qualifications indicated in the Procurement and Contracting Documents.
- C. The Bidder has incorporated into the Bid adequate sums for work performed by installers whose qualifications meet those indicated in the Procurement and Contracting Documents.

1.2 BIDDING DOCUMENTS

- A. Interpretation or Correction of Procurement and Contracting Documents:
 - 1. Submit Bidder's Requests for Interpretation as outlined in the Notice to Bidders.
- B. Submit Requests for Substitution on form provided. Substitution requests shall be in advance of bid.

C. Addenda:

- 1. Addenda may be issued at any time prior to the receipt of bids.
- 2. Owner may elect to waive the requirement for acknowledging receipt of Addenda as follows:
 - a. Information received as part of the Bid indicates that the Bid, as submitted, reflects modifications to the Procurement and Contracting Documents included in an unacknowledged Addendum.

b. Modifications to the Procurement and Contracting Documents in an unacknowledged Addendum do not, in the opinion of Owner, affect the Contract Sum or Contract Time.

1.3 BIDDING PROCEDURES

A. Preparation of Bids:

- 1. The Bid shall include unit prices when called for by the Procurement and Contracting Documents. Owner may elect to consider unit prices in the determination of award. Unit prices will be incorporated into the Contract.
- 2. Owner may elect to disqualify a bid due to failure to submit a bid in the form requested, failure to bid requested alternates or unit prices, failure to complete entries in all blanks in the Bid Form, or inclusion by the Bidder of any alternates, conditions, limitations or provisions not called for.

Retail sales tax will NOT be included in the bid amount. The Owner is exempted by Section 3 of the Illinois Use Tax Act (Section 3, House Bill 1610, approved July 31, 1961, Illinois Revised Statutes 1967, Chapter 120, Section 439.3) from paying any of the taxes imposed by the Act and sales to Owner are exempt by Section 2, House Bill 1609, approved July 31, 1961, Illinois Revised statutes 1967, Chapter 120, Section 441) from any of the taxes imposed by the Act. The Department of Revenue of the State of Illinois under Rule No. 15, issued August 9, 1961, has declared that sales of materials to construction contractors for conversion into real estate for schools, governmental bodies, agencies and instrumentalities are not taxable retail sales. The Contractor shall be responsible for any sales, consumer, use and similar taxes for the Work.

- 3. Owner is not responsible for any costs incurred by a Contractor in the preparation or delivery of bids. The Contractor shall be responsible for the actual delivery of bids during business hours to the address indicated. Any bid received after the delivery deadline will be disqualified.
- 4. Owner reserves the right to obtain clarification of any point in a Contractor submittal or to obtain additional information.

FOIA: As an independent Contractor of the District, records in the possession of the Contractor related to this Agreement may be subject to the Illinois Freedom of Information Act ("FOIA"), 5 ILCS 140/5-1 et seq.; 5 ILCS 140/7(2). The Contractor shall immediately provide the District with any such records

requested by the District in order to timely respond to any FOIA request received by the District.

- B. Subcontractors, Suppliers, and Manufacturers List Bid Supplement:
 - 1. Provide list of major subcontractors, suppliers, and manufacturers furnishing or installing products no later than **ten (10) business days** following Notice to Proceed. Do not change subcontractors, suppliers, and manufacturers from those submitted without approval of Owner.

1.4 CONSIDERATION OF BIDS

A. Rejection of Bids:

Owner reserves the right to reject a bid based on Owner's and Design Team's evaluation of qualification information submitted following opening of bids. Owner's evaluation of the Bidder's qualifications will include: status of licensure and record of compliance with licensing requirements, record of quality of completed work, record of Project completion and ability to complete, record of financial management including financial resources available to complete Project and record of timely payment of obligations, record of Project site management including compliance with requirements of authorities having jurisdiction, record of and number of current claims and disputes and the status of their resolution, and qualifications of the Bidder's proposed Project staff and proposed subcontractors.

1.5 PERFORMANCE BOND AND PAYMENT BOND

- A. Both a Performance Bond and a Payment Bond will be required, each in an amount equal to 100 percent of the Contract Sum.
- B. The Bidder shall deliver the required bonds to Owner no later than **ten (10)** days after the date of Notice of Intent to Award and no later than the date of execution of the Contract, whichever occurs first. Owner may deem the failure of the Bidder to deliver required bonds within the period of time allowed a default.
- C. Bonds shall be executed and be in force on the date of the execution of the Contract.

1.6 INSURANCE

- A. The Contractor shall take all necessary precautions and exercise due caution so as not to damage the premises or properties of others. The Contractor's signature on the bid sheet certifies to the District that the Contractor has adequate insurance coverage for any vehicle that may be utilized in the delivery of products or materials on the District's property. The Contractor shall submit evidence, satisfactory to the District, that the Contractor has coverage of General Liability Insurance, Worker's Compensation Insurance, and Automobile Liability Insurance to the limits described below with companies licensed to do business in Illinois with an A.M. Best rating of A that is satisfactory to the District. The certificates of such insurance shall carry an endorsement to the effect that the Insurance Company will defend the District as a party in the event the successful bidder becomes a party to any litigation as a result of the activities of the Contractor, subcontractor, or any direct or indirect employee of same under the terms of this contract for injuries to property or person. Such policies shall name the District, its Board, Board members, employees, agents, and successors as an additional insured and provide that it is primary to, and not contributing with, any policy carried by Contractor covering the same loss with a waiver of subrogation in favor of the School District. The Contractor shall provide Certificates of Insurance for:
 - 1. Vehicular: It is required that the successful Contractor present to the District, before commencing delivery under this Contract, a Certificate of Insurance covering all vehicles that may be utilized. Said insurance is to provide a \$1,000,000 combined single limit for bodily injury and property damage. All certificates shall indicate that the carrying company shall not cancel insurance coverage without giving Owner thirty (30) days written advance notification.
 - 2. Liability: It is required that the successful Contractor present to the District, before commencing delivery under this Contract, a Certificate of Insurance for which coverage is included for contractor liability, contingent liability, contractual liability, and product liability. Bodily injury and property damage limits of \$1,000,000 occurrence and \$2,000,000 aggregate. Said Certificate shall indicate that the carrying company shall not cancel insurance coverage without giving District thirty (30) days written advance notice.
 - 3. Worker's Compensation: Statutory Limits.

1.7 STANDARD CONTRACT CONDITIONS

A. This contract shall be governed in all aspects as to validity, construction, capacity, performance, or otherwise by the laws of the State of Illinois.

- B. Contractors shall comply with the Civil Rights Act of 1964, as amended, all applicable State and Federal non-discrimination laws including but not limited to the Family and Medical Leave Act, the Americans with Disabilities Act, the Age Discrimination in Employment Act and shall comply with the provisions of the Illinois Human Rights Act.
- C. Contractors shall not assign, transfer, convey, sublet, or otherwise dispose of this contract, including any or all of it right, title or interest therein, or its power to execute such contract to any person, company or corporation, without prior written consent of The County of Champaign.
- D. By submitting a bid the Contractor certifies that the Contractor is not barred from bidding on this contract as a result of a violation of either the bid-rigging or bid-rotating provisions of Article 33E of the Criminal Code of 1961, as amended.
 - By submitting a bid, the Contractor, having 25 or more employees, does hereby certify pursuant to Section 3 of the Illinois Drug-Free Workplace Act (30 ILCS 580/3) that it shall provide a drug-free workplace for all employees engaged in the performance of work under the contract by complying with the requirements of the Illinois Drug-Free Workplace Act and, further certifies, that it is not ineligible for award of this contract by reason of debarment for a violation of the Illinois Drug-Free Workplace Act.
- E. By submitting a bid, the Contractor does hereby certify pursuant to Section 2-105 of the Illinois Human Rights Act (775 ILCS 5/2-105) that it has a written sexual harassment policy that includes, at a minimum, the following information: (i) the illegality of sexual harassment; (ii) the definition of sexual harassment under State law; (iii) a description of sexual harassment, utilizing examples; (iv) an internal complaint process including penalties; (v) the legal recourse, investigative and complaint process available through the Department of Human Rights and Human Rights Commission; (vi) direction on how to contact the Department of Human Rights and Human Rights Commission; and (vii) protection against retaliation.

1.8 STATEMENT OF NON-DISCRIMINATION

A. The Illinois Human Rights Acts prohibits discrimination on the basis of: "race, color, religion, sex, national origin, ancestry, age, order of protection status, marital status, physical or mental disability, military status, sexual orientation, or unfavorable discharge from military service in connection with employment, real estate transactions, access to financial credit, and the availability of public accommodations." It also prohibits sexual harassment and discrimination in employment on the basis of citizenship status.

1.9 PREVAILING WAGE

- A. This contract calls for the construction of a "public work" within the meaning of the Illinois Prevailing Wage Act, 920 ILCS 130/.01. The Act requires contractors and subcontractors to pay all aborers, workers and mechanics performing services on public works projects no less than the "prevailing rate of wages" (hourly cash wages plus fringe benefits) in the county where the work is performed. Each Contractor and Subcontractor rendering services under this contract must comply with all requirements of this Act. Each Contractor and Subcontractor shall keep records of the prevailing wages paid to their employees, submit a monthly certified payroll to County of Champaign, and make such records available to County of Champaign for inspection upon seven business days notice.
- B. For information regarding the current prevailing wage rates for Champaign County, Illinois can be found at:

http://www.illinois.gov/idol/laws-rules/conmed/pages/rates.aspx.

C. Prevailing Wage Rates change periodically. Contractor shall verify and revise the prevailing wages on a regular basis.

1.10 FAILURE TO FULFILL CONTRACT

- A. When any Contractor fails to provide a service or provides a service which does not conform to the specifications, County of Champaign may, at its sole discretion, annul and set aside the contract entered into with said Contractor, either in whole or in part, and make and enter into a new contract for the same services in such manner as seems to County of Champaign to be to its best advantage. Any failure to furnish services by reason of the failure of the Contractor, as stated above, shall be a liability against such Contractor and his sureties. County of Champaign reserves the right to cancel, without penalty, any services which the successful Contractor may be unable to furnish because of economic conditions, governmental regulations or other similar causes beyond the control of the Contractor provided satisfactory proof is furnished to County of Champaign if requested.
- B. Without Cause Termination: The County may terminate its contract with the Contractor without cause after providing the Contractor with thirty (30) days written notice.

1.11 EXECUTION OF THE CONTRACT

- A. Subsequent to the Notice of Intent to Award, and within **ten (10) business days** after the prescribed Form of Agreement is presented to the Awardee for signature, the Awardee shall execute and deliver the Agreement to Owner through Architect, in such number of counterparts as Owner may require.
- B. Owner may deem as a default the failure of the Awardee to execute the Contract and to supply the required bonds and insurance when the Agreement is presented for signature within the period of time allowed.
- C. Unless otherwise indicated in the Procurement and Contracting Documents of the executed Agreement, the date of commencement of the Work shall be the date of the executed Agreement.
 - In the event of a default, Owner may declare the amount of the Bid security forfeited and elect to either award the Contract to the next responsible bidder or re-advertise for bids.

1.12 INDEMNITY

A. To the fullest extent permitted by law, Contractor shall indemnify and hold harmless the Owner from and against claims, damages, losses and expenses, including but not limited to attorney's fees, arising out of or resulting from performance of the work provided that such claim, damage, loss or expense is attributable to bodily injury, sickness, disease or death, or to injury to or destruction of tangible property, but only to the extent caused by the negligent acts or omissions of the Contractor, a subcontractor, anyone directly or indirectly employed by them or anyone for whose acts they may be liable, regardless of whether or not such claim damage, loss or expense is caused in part by a party indemnified hereunder.

END OF DOCUMENT 00 2213

DOCUMENT 00 3119 - EXISTING CONDITION INFORMATION

1.1 EXISTING CONDITION INFORMATION

- A. This Document with its referenced attachments is part of the Procurement and Contracting Requirements for Project. They provide Owner's information for Bidders' convenience and are intended to supplement rather than serve in lieu of the Bidders' own investigations. They are made available for Bidders' convenience and information, but are not a warranty of existing conditions. This Document and its attachments are not part of the Contract Documents.
- B. Photographic report of existing conditions that includes photographic documentation on existing conditions is appended to this Document.

END OF DOCUMENT 00 3119

<u>DIVISION 0 - BIDDING AND CONTRACT REQUIREMENTS</u>

Section 00 32 50 – Minority and Female Business Enterprise

PART 1- GENERAL

1.1 SUMMARY

- A. It is the intent of Champaign County to utilize Minority and Female Business Enterprises (MBE/FBE) in the project. In this regard, the Owner encourages minority and female participation as Prime Contractors, as well as for Prime Contractors to utilize available resources to identify such businesses, and recruit them to work as Subcontractors and suppliers on the Project. Champaign County is committed to providing equal employment opportunities to all employees, candidates for employment, and contractors and will not discriminate against any employee, candidate for employment, or contractor on the basis of race, color, religion, sex, national origin, disability, or other class protected by law. Attached is a sample Minority and Female Business Participation Documentation Form, for documenting all efforts made to utilize MBE/FBE. This document [Section 00 32 50.01 Minority and Female Business Enterprise form] is required to be submitted with the bid.
- B. Documentation of good faith efforts are to be **included** in a bidders bid package submitted on the bid due date identified in Section 00 11 00 Invitation to Bid.
- C. In its bid, a bidding entity shall list the name and relevant contact information of any certified MBE/FBE firm with which the bidding entity plans to subcontract and the proposed dollar value of any subcontract(s).
- D. Prime Contractor will list any and all MBE/FBEs contacted during the bid process, including but not limited to sub-contractors, sub sub-contractors, and material suppliers. Contracted companies shall perform a commercially useful function for this project.
- E. The Prime Contractor shall provide documentation with the Construction Schedule of Values (CSV) and with the Final Application for Payment. An updated MBE/FBE summary shall be submitted with any Change Order. The Prime Contractor and its subcontractors must provide to the Owner documentation on their good faith efforts to comply with both MBE/FBE contract and minority/women workforce participation goals. This would include, but not be limited to, weekly certified payroll reports, subcontract award and payment.
- F. All such enterprises must perform a **commercially useful function**. Enterprises which might be considered "pass-throughs" or "fronts" are not permitted.

END OF SECTION 00 32 50

DIVISION 0 - BIDDING AND CONTRACT REQUIREMENTS

Section 00 41 05 – Minority/Female Business Enterprise Program Requirements

INSTRUCTIONS: The Bidder will include below the names of certified MBE/FBE enterprises (CMS Certified) and the proposed dollar value of the subcontract. Efforts to comply with these requirements will be considered in evaluating the bid. **This sheet should be returned with the bid**.

BIDDER'S MBE/FBE SUBCONTRACTOR/SUPPLIER FIRMS, INCLUDING ADDRESS AND TELEPHONE NUMBER TO BE UTILIZED IN REGARD TO THIS CONTRACT, SHOULD BE NOTED BELOW (Include base bid and each alternate on next page(s)):

BID PACKAGE NO. 1:

	Name of MBE/FBE Firm	Proposed	Telephone	MBE/FBE Denotation	1
	Address	\$ Value of	Number	And	
	City, State, ZIP	Subcontract		Certifying Agency	
1.				MBE ☐BE	
2.				☐MBE ☐BE	
3.				■MBE ■BE	
4.				☐MBE ☐BE	
5.				☐MBE ☐BE	
6.				☐MBE ☐BE	
7.				■MBE ■BE	

END OF SECTION 00 41 05

DOCUMENT 00 4113 - BID FORM - STIPULATED SUM (SINGLE-PRIME CONTRACT)

1.1	BID INFORMATION		
A.	Bidder:		
В.	Project Name: Hail Damaged HVAC Replacement Project		
C.	Project Location: Brookens Administrative Center 1776 East Washington Street Urbana, Illinois 61802		
D.	Owner: County of Champaign		
E.	Building Design Team: GHR Engineers and Associates, Inc.		
1.2	CERTIFICATIONS AND BASE BID		
Α.	Base Bid, Single-Prime (All Trades) Contract: The undersigned Bidder, having carefully examined the Procurement and Contracting Requirements, Conditions of the Contract, Drawings, Specifications, and all subsequent Addenda, as prepared by the Design Team, having visited the site, and being familiar with all conditions and requirements of the Work, hereby agrees to furnish all material, labor, equipment and services, including all scheduled allowances, necessary to complete the construction of the above-named project, according to the requirements of the Procurement and Contracting Documents, for the stipulated sum of: 1		
1.3	BID GUARANTEE		
A.	The undersigned Bidder agrees to execute a contract for this Work in the above amount and to furnish surety as specified within ten (10) days after a written Notice of Award, if offered within sixty (60) days after receipt of bids, and on failure to do so agrees to forfeit to Owner the attached bank draft/cashier's check, certified check, U.S. money order, or bid bond payable to County of Champaign , as liquidated damages for such failure, in an amount constituting ten percent (10%) of the Base Bid amount:		

- B. In the event Owner does not offer Notice of Award within the time limits stated above, Owner will return to the undersigned the bank draft/cashier's check, certified check, U.S. money order, or bid bond.
- C. The Owner reserves the right to accept or not accept Alternate Bids 1 and 2 in whatever order best serves the County's needs.

1.4 TIME OF COMPLETION

A. The undersigned Bidder proposes and agrees hereby to commence the Work of the Contract Documents on a date specified in a written Notice to Proceed to be issued by Owner, and shall fully complete the Work as indicated in the Invitation to Bid.

1.5 ACKNOWLEDGEMENT OF ADDENDA

A. The undersigned Bidder acknowledges receipt of and use of the following Addenda in the preparation of this Bid:

1.	Addendum No. 1, dated	
2.	Addendum No. 2, dated	
3	Addendum No. 3. dated	

1.6 CONTRACTOR'S LICENSE

A. The undersigned warrants that he/she is duly authorized to bind contractually the entity submitting this bid, to fully perform all duties and to deliver all services in accordance with the terms and conditions set forth herein. All signatures to be sworn before a Notary Public.

1.7 SUBMISSIC	ON OF BID		
Respectfully subn	nitted this day of	_, 2021.	
Submitted By:	Name of bidding firm or corpor	ration)	
Authorized Signature:	(,	
Ü	(Handwritten signature)		
Signed By:	(Type or print name)		
Title:	(Type of prine name)		
Tree.	(Owner/Partner/President/Vice	President)	
Witness By:	(Handwritten signature)		
Attest:	(Harrawitten signature)		
	(Handwritten signature)		
Ву:	(Type or print name)		
	, ,, ,		
	Subscribed and sworn to before	me this	
	Day of	, 2021.	
		, Notary Public	
		(Affix Notary Seal He	ere)

END OF DOCUMENT 00 4113

DOCUMENT 00 4313 - BID SECURITY FORMS

1.1 BID FORM SUPPLEMENT

A. A completed bid bond form is required to be attached to the Bid Form.

1.2 BID BOND FORM

- A. AIA Document A310, "Bid Bond," is the recommended form for a bid bond. A bid bond acceptable to Owner, is required to be attached to the Bid Form as a supplement.
- B. Copies of AIA standard forms may be obtained from The American Institute of Architects; www.aia.org/contractdocs/purchase/index.htm; email: docspurchases@aia.org; (800) 942-7732.

END OF DOCUMENT 00 4313

SECTION 01 1000 - SUMMARY

PART 1 - GENERAL

1.1 PROJECT INFORMATION

A. Project Identification: Hail Damaged HVAC Replacement Project

1. Project Location:

Brookens Administrative Center 1776 East Washington Street Urbana, Illinois 61802

B. Owner: County of Champaign

C. Design Team: GHR Engineers and Associates, Inc.

D. Project Description:

1. Base Bid: Project consists of replacement of hail damaged rooftop equipment at numerous Champaign County buildings.

1.2 WORK RESTRICTIONS

Contractor's Use of Premises: During construction, Contractor will have limited use of site and building indicated. Contractor's use of premises is limited only by Owner's right to perform work or employ other contractors on portions of Project and as follows:

- 1. Owner will occupy premises during construction. Perform construction only during normal working hours 8 AM to 5 PM Monday thru Friday, other than holidays, unless otherwise agreed to in advance by Owner. Clean up work areas and return to usable condition at the end of each work period.
- 2. Limits: Limit site disturbance.
- 3. Driveways, Walkways, and Entrances: Keep driveways, loading areas, and entrances serving premises clear and available to Owner, Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials.

- B. On-Site Work Hours: Limit work in the existing building to normal business working hours of 8 AM to 5 PM, Monday through Friday, unless otherwise indicated.
 - 1. Weekend Hours: As permitted by Owner. Coordinate with Owner.
 - 2. Early Morning Hours: 7 AM or as permitted by Owner. Coordinate with Owner.
- C. Nonsmoking Building: Smoking is not permitted within the building or on the project site.

1.3 BACKGROUND CHECKS

A. All workers to work within the building will be required to have a background check. Checks will be performed by the Sheriff's Office. No fee to the contractor.

1.4 MISC

- A. Contractor to keep job site cleaned of loose debris.
- B. Contractor tools and equipment to be secured nightly.
- C. Protect roof & repair damage as needed.
- D. Contractor shall use best effort to keep County property free of fires.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 1000

SECTION 01 2000 - PRICE AND PAYMENT PROCEDURES

PART 1 - GENERAL

1.1 PAYMENT PROCEDURES

- A. Submit a Schedule of Values at least **seven (7)** days before the initial Application for Payment. Break down the Contract Sum into at least one line item for each Specification Section in the Project Manual table of contents. Coordinate the schedule of values with Contractor's construction schedule.
 - Arrange schedule of values consistent with format of AIA Document G703.
 - 2. Round amounts to nearest whole dollar; total shall equal the Contract Sum.
 - 3. Provide a separate line item in the schedule of values for each part of the Work where Applications for Payment may include materials or equipment purchased or fabricated and stored, but not yet installed.
 - 4. Provide separate line items in the schedule of values for initial cost of materials and for total installed value of that part of the Work.
 - 5. Provide a separate line item in the schedule of values for each allowance.
- B. Application for Payment Forms: Use AIA Document G702 and AIA Document G703 forms for Applications for Payment.
 - 1. Anticipated Application for Payment Schedule:
 - a. Application for Payment No. 01: once material is delivered to project site
 - b. Application for Payment No. 02: upon completion of installation
 - c. Application for Payment No. 03: Final payment upon completion of punch list, receipt of all close-out documents and completion of owner training
- C. Submit **three (3)** copies of each application for payment according to the schedule established in Owner/Contractor Agreement.
 - 1. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor.
 - 2. With each Application for Payment, Contractor shall include the Contractor's waiver of lien for the full amount and partial waivers of mechanic's liens from subcontractors, sub-subcontractors, and suppliers for construction period covered by the previous application.

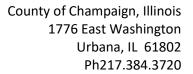
- 3. Submit final Application for Payment with or preceded by conditional final waivers from every entity involved with performance of the Work covered by the application who is lawfully entitled to a lien.
 - a. Include insurance certificates, proof that taxes, fees, and similar obligations were paid, and evidence that claims have been settled.
 - b. Include affidavit of payment of debts and claims on AIA Document G706.
 - c. Include affidavit of release of liens on AIA Document G706A.
 - d. Include consent of surety to final payment on AIA Document G707.
- 4. Certified Payroll Statements: The Contractor shall submit Certified Payroll Statements pursuant to Illinois Law-Public Act 94-0515 with each payment application. The Certified Transcript of Payroll statement forms are available through the Illinois Department of Labor website: http://www.state.il.us/agency/idol/forms/pdfs/IL452CM02.pdf. Certified payroll statements are required from the Contractor and each Subcontractor. The statements are to include the time period of the payment application. Payment Applications will not be processed without accompanying Certified Payroll Statements.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

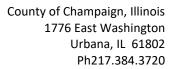
END OF SECTION 01 2000

SECTION 01 2500 - SUBSTITUTION PROCEDURES


PART 1 - GENERAL

1.1 SUBSTITUTION PROCEDURES

- A. Substitutions include changes in products, materials, equipment, and methods of Contractor.
- B. Substitution Requests: Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles. Substitutions will NOT be considered after bidding.
 - 1. Substitution Request Form: Use facsimile of form provided in the Project Manual.
 - 2. Submit requests by noon on Friday, May 28, 2021.
 - 3. Identify product to be replaced and show compliance with requirements for substitutions. Include a detailed comparison of significant qualities of proposed substitution with those of the Work specified, a list of changes needed to other parts of the Work required to accommodate proposed substitution, and any proposed changes in the Contract Sum or the Contract Time should the substitution be accepted.
 - 4. Documentation: Show compliance with requirements for substitutions and the following, as applicable:
 - a. Statement indicating why specified product or fabrication or installation cannot be provided, if applicable.
 - b. Coordination information, including a list of changes or revisions needed to other parts of the Work and to construction performed by Owner and separate contractors that will be necessary to accommodate proposed substitution.
 - c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Include annotated copy of applicable Specification Section. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
 - d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.


- e. Samples, where applicable or requested:
 - 1) All samples shall be clearly labeled with product information and Vendor contact information.
- f. Certificates and qualification data, where applicable or requested.
- g. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners.
- h. Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.
- i. Research reports evidencing compliance with building code in effect for Project.
- j. Detailed comparison of Contractor's construction schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.
- k. Cost information, including a proposal of change, if any, in the Contract Sum.
- I. Contractor's certification that proposed substitution complies with requirements in the Contract Documents except as indicated in substitution request, is compatible with related materials, and is appropriate for applications indicated.
- m. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.
- C. Architect will review proposed substitutions and notify Contractor of their acceptance or rejection via Addendum. If necessary, Architect will request additional information or documentation for evaluation.
 - 1. Use product specified if Architect does not issue a decision on use of a proposed substitution within time allocated.
- D. Do not submit unapproved substitutions on Shop Drawings or other submittals.

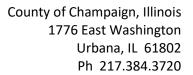
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

SUBSTITUTION REQUEST FORM

Project:	Hail Damaged HVAC Replacement	Project	Request No.:	
			Date:	
Location (pro	ovide room number(s):			
Name of Mate	erial, Product or Equipment item spe	cified:		
Name of Mate	erial, Product or Equipment item sub	mitted as substitution:		
Specification :	Section:			
Qualities that	differ from specified product or syst	em:		
Name of Man	ufacturer / Fabricator:			
Address				
City, State and	d Zip		Phone:	
Name of Ver	ndor / Supplier Requesting Change	Address	Contact Name	Phone:
Reason for r	equesting substitution request:			
	affects other materials or system is to other work:	ns, such as dimension	al revisions, redesign o	of structure or
NO				
YES; c	describe requirements:			

	ititution requires modifications to dim indicated on attached data?	ensions indicated on drawings, are such modifications
	_YES	
	_NO; if NO, explain:	
Substit	tution has an affect on Construction Sch	edule:
	_NO	
	_YES; describe affect on schedule:	
Saving	s or Credit to Contract Amount for acce	pting substitute:
Note:	Show bid amount in both words and figu	Dollars (\$).
The att	tached data is furnished herewith for ev	valuation of the substitution:
	_Product Data DrawingsS	amplesTestsReports
	_Other Information; describe:	
The un	dersigned hereby certifies:	
1.	The proposed substitution has been product.	fully investigated and is equal or superior to specified
2.	·	nished for proposed substitution as for specified material,
3.	All changes in the work resulting from to and completed in all respects and all	he use of this substitution, if approved, will be coordinated costs, including, but not limited to, those for additional e responsibility for this Contractor at no additional cost to
Contrac	ctor	Signed by
Address	S	_
City, Sta	ate and Zip	
END OF	SUBSTITUTION FORM 01 2500a	



SECTION 01 2600 - CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 CONTRACT MODIFICATION PROCEDURES

- A. Design Team will issue supplemental instructions authorizing minor changes in the Work, not involving adjustment to the Contract Sum or the Contract Time.
- B. Owner-Initiated Proposal Requests: Design Team will issue a detailed description of proposed changes in the Work.
 - 1. Proposal Requests are not instructions either to stop work in progress or to execute the proposed change.
 - 2. Within time specified in Proposal Request or 20 days, when not otherwise specified, after receipt of Proposal Request, submit a quotation estimating cost adjustments to the Contract Sum and the Contract Time.
- C. Contractor-Initiated Proposals: If latent or changed conditions require modifications to the Contract, Contractor may initiate a claim by submitting a request for a change to Design Team.
- D. On Owner's approval of a Proposal Request, Design Team will issue a Change Order for signatures of Owner and Contractor, for all changes to the Contract Sum or the Contract Time.
- E. Design Team may issue a Construction Change Directive. Construction Change Directive instructs Contractor to proceed with a change in the Work, for subsequent inclusion in a Change Order.
 - 1. Construction Change Directive contains a complete description of change in the Work. It also designates method to be followed to determine change in the Contract Sum or the Contract Time.
- F. Documentation: Maintain detailed records on a time and material basis of work required by the Construction Change Directive. After completion of change, submit an itemized account and supporting data necessary to substantiate cost and time adjustments to the Contract.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

SECTION 01 3000 - ADMINISTRATIVE REQUIREMENTS

PART 1 - GENERAL

1.1 PROJECT MANAGEMENT AND COORDINATION

- A. Subcontract List: Submit a written summary identifying individuals or firms proposed for each portion of the Work.
- B. Key Personnel Names: Within ten (10) days of starting construction operations, submit a list of key personnel assignments, including superintendent and other personnel in attendance at Project site. List e-mail addresses and telephone numbers.
- C. Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work.
- D. Requests for Information (RFIs): On discovery of the need for additional information or interpretation of the Contract Documents, Contractor shall prepare and submit an RFI. Use forms acceptable to Design Team and Owner.
- E. Schedule and conduct (2) progress meetings at Project site, coordinated with the Design Team and Owner. **Notify Owner of meeting dates and times.** Require attendance of each subcontractor or other entity concerned with current progress or involved in planning, coordination, or performance of future activities.

1.2 SUBMITTAL ADMINISTRATIVE REQUIREMENTS

- A. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 - No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 - 2. Submit two copies of each action submittal. Design Team will return one copy.
 - 3. Submit one copy of each informational submittal. Design Team will not return copies.
 - 4. Design Team will discard submittals received from sources other than Contractor.

- B. Electronic Submittals: Identify and incorporate information in each electronic submittal file as follows:
 - 1. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.
 - 2. Name file with unique identifier, including project identifier, Specification Section number, and revision identifier.
 - 3. Provide means for insertion to permanently record Contractor's review and approval markings and action taken by Design Team.
- C. Identify options requiring selection by Design Team.
- D. Identify deviations from the Contract Documents on submittals.
- E. Contractor's Construction Schedule Submittal Procedure:
 - 1. Submit required submittals in the following format:
 - a. PDF electronic file.
 - 2. Coordinate Contractor's construction schedule with the schedule of values, submittal schedule, progress reports, payment requests, and other required schedules and reports.

PART 2 - PRODUCTS

2.1 SUBMITTAL PROCEDURES

- A. General Submittal Procedure Requirements: Prepare and submit submittals required by individual Specification Sections.
 - 1. Submit electronic submittals via email as PDF electronic files to Shannon Hicks at GHR Engineers and Associates, Inc.: shicks@ghrinc.com.
 - a. Design Team will return annotated file. Annotate and retain one copy of file as an electronic Project record document file.

2.2 ACTION SUBMITTALS

A. Submit two paper copies of each submittal unless otherwise indicated. Design Team will return one copy.

- B. Product Data: Mark each copy to show applicable products and options. Include the following:
 - 1. Manufacturer's written recommendations, product specifications, and installation instructions.
 - 2. Wiring diagrams showing factory-installed wiring.
 - 3. Printed performance curves and operational range diagrams.
 - 4. Testing by recognized testing agency.
 - 5. Compliance with specified standards and requirements.
- C. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data. Submit on sheets at least 8-1/2 by 11 inches but no larger than 30 by 42 inches. Include the following:
 - 1. Dimensions and identification of products.
 - 2. Fabrication and installation drawings and roughing-in and setting diagrams.
 - 3. Wiring diagrams showing field-installed wiring.
 - 4. Notation of coordination requirements.
 - 5. Notation of dimensions established by field measurement.

2.3 INFORMATIONAL SUBMITTALS

- A. Informational Submittals: Submit one paper copy of each submittal unless otherwise indicated. Design Team will not return copies.
- B. Qualification Data: Include lists of completed projects with project names and addresses, names and addresses of Design Team and owners, and other information specified.
- C. Product Certificates: Prepare written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.

PART 3 - EXECUTION

3.1 SUBMITTAL REVIEW

A. Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Design Team.

- B. Design Team will review each action submittal, make marks to indicate corrections or modifications required, will stamp each submittal with an action stamp, and will mark stamp appropriately to indicate action.
- C. Informational Submittals: Design Team will review each submittal and will not return it, or will return it if it does not comply with requirements. Design Team will forward each submittal to appropriate party.
- D. Submittals not required by the Contract Documents may not be reviewed and may be discarded.

SECTION 01 4000 - QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 SECTION REQUIREMENTS

- A. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
- B. Referenced Standards: If compliance with two or more standards is specified and the standards establish different or conflicting requirements, comply with the most stringent requirement. Refer uncertainties to Design Team for a decision.
- C. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum. The actual installation may exceed the minimum within reasonable limits. Indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Design Team for a decision.
- D. Test and Inspection Reports: Prepare and submit certified written reports specified in other Sections. Include the following:
 - 1. Date of issue.
 - 2. Project title and number.
 - 3. Name, address, and telephone number of testing agency.
 - 4. Dates and locations of samples and tests or inspections.
 - 5. Names of individuals making tests and inspections.
 - 6. Description of the Work and test and inspection method.
 - 7. Identification of product and Specification Section.
 - 8. Complete test or inspection data.
 - 9. Test and inspection results and an interpretation of test results.
 - 10. Record of temperature and weather conditions at time of sample taking and testing and inspecting.
 - 11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
 - 12. Name and signature of laboratory inspector.
 - 13. Recommendations on retesting and reinspecting.

- E. Permits, Licenses, and Certificates: For Owner's records, submit copies of permits, licenses, certifications, inspection reports, notices, receipts for fee payments, and similar documents, established for compliance with standards and regulations bearing on performance of the Work.
- F. Testing Agency Qualifications: An independent agency with the experience and capability to conduct testing and inspecting indicated; and where required by authorities having jurisdiction, that is acceptable to authorities.
- G. Retesting / Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced work that failed to comply with the Contract Documents.
- H. Testing Agency Responsibilities: Cooperate with Design Team and Contractor in performance of duties. Provide qualified personnel to perform required tests and inspections.
 - 1. Notify Design Team and Contractor of irregularities or deficiencies in the work observed during performance of its services.
 - 2. Do not release, revoke, alter or increase requirements of the Contract Documents or approve or accept any portion of the work.
 - 3. Do not perform any duties of Contractor.
- I. Coordination: Coordinate sequence of activities to accommodate required qualityassurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.
 - 1. Schedule times for tests, inspections, obtaining samples, and similar activities.
- J. Tests and Inspections: Owner will engage a qualified inspector to conduct inspections required by authorities having jurisdiction.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 REPAIR AND PROTECTION

- A. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.
- B. Contractor will maintain a safe work site at all times. When the project is complete, Contractor shall return the work site and the surrounding areas to the same condition as they were prior to the beginning of the project.

SECTION 01 6000 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 SECTION REQUIREMENTS

- A. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.
- B. Comparable Product Requests: Submit request for consideration of each comparable product. Identify product or fabrication or installation method to be replaced.
 - 1. Show compliance with requirements for comparable product requests.
 - 2. Design Team will review the proposed product and notify Contractor of its acceptance or rejection.
- C. Basis-of-Design Product Specification Submittal: Show compliance with requirements.
- D. Compatibility of Options: If Contractor is given option of selecting between two or more products, select product compatible with products previously selected.
- E. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft. Comply with manufacturer's written instructions.
 - 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
 - 2. Deliver products to Project site in manufacturer's original sealed container or packaging, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
 - 3. Inspect products on delivery to ensure compliance with the Contract Documents and to ensure that products are undamaged and properly protected.
 - 4. Store materials in a manner that will not endanger Project structure.
 - 5. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
- F. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

- A. Provide products that comply with the Contract Documents, are undamaged, and, unless otherwise indicated, are new at the time of installation.
 - 1. Provide products complete with accessories, trim, finish, and other devices and components needed for a complete installation and the intended use and effect.
 - 2. Where products are accompanied by the term "as selected," Owner will make selection.
 - 3. Descriptive, performance, and reference standard requirements in the Specifications establish salient characteristics of products.
- B. Where the following headings are used to list products or manufacturers, the Contractor's options for product selection are as follows:

1. Products:

- a. Where requirements include "one of the following," provide one of the products listed that complies with requirements.
- b. Where requirements do not include "one of the following," provide one of the products listed that complies with requirements or a comparable product.

2. Manufacturers:

- a. Where requirements include "one of the following," provide a product that complies with requirements by one of the listed manufacturers.
- b. Where requirements do not include "one of the following," provide a product that complies with requirements by one of the listed manufacturers or another manufacturer.
- 3. Basis-of-Design Product: Provide the product named, or indicated on the Drawings, or a comparable product by one of the listed manufacturers.

2.2 COMPARABLE PRODUCTS

A. Design Team will consider Contractor's request for comparable product in advance of Bidding only when the following conditions are satisfied:

- 1. Evidence that the proposed product does not require revisions to the Contract Documents, that it is consistent with the Contract Documents and will produce the indicated results, and that it is compatible with other portions of the Work.
- 2. Detailed comparison of significant qualities of proposed product with those named in the Specifications.
- 3. List of similar installations for completed projects, if requested.
- 4. Samples, where applicable.

PART 3 - EXECUTION (Not Used)

SECTION 01 7000 - EXECUTION AND CLOSEOUT REQUIREMENTS

PART 1 - GENERAL

1.1 EXECUTION REQUIREMENTS

A. Cutting and Patching:

- Structural Elements: When cutting and patching structural elements, notify
 Design Team of locations and details of cutting and await directions from
 Architect before proceeding. Shore, brace, and support structural elements
 during cutting and patching.
- 2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety.
- 3. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities.
- B. Manufacturer's Installation Instructions: Obtain and maintain on-site manufacturer's written recommendations and instructions for installation of products and equipment.

1.2 CLOSEOUT SUBMITTALS

- A. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.
- B. Certified List of Incomplete Items: Final submittal at Final Completion.
- C. Operation and Maintenance Data: Submit two (2) copies of manual.
- D. PDF Electronic File: Assemble manual into a composite electronically indexed file. Submit two (2) copies on digital media.
- E. Record Product Data: Submit two (2) paper copies and annotated PDF electronic files and directories of each submittal.

1.3 SUBSTANTIAL COMPLETION PROCEDURES

- A. Prepare a list of items to be completed and corrected (punch list), the value of items on the list, and reasons why the Work is not complete.
- B. Submittals Prior to Substantial Completion: Before requesting Substantial Completion inspection, complete the following:
 - 1. Submit closeout submittals specified in other sections, including project record documents, operation and maintenance manuals, similar final record information, warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
 - 2. Submit maintenance material submittals specified in other sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Owner.
 - 3. Submit test/adjust/balance records.
- C. Procedures Prior to Substantial Completion: Before requesting Substantial Completion inspection, complete the following:
 - 1. Complete startup and testing of systems and equipment.
 - 2. Perform preventive maintenance on equipment used prior to Substantial Completion.
 - 3. Remove temporary facilities and controls.
 - 4. Complete final cleaning requirements, including touchup painting.
 - 5. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.
- D. Inspection: Submit a written request for inspection for Substantial Completion. On receipt of request, Architect will proceed with inspection or advise Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will advise Contractor of items that must be completed or corrected before certificate will be issued.

1.4 FINAL COMPLETION PROCEDURES

- A. Submittals Prior to Final Completion: Before requesting inspection for determining final completion, complete the following:
 - 1. Submit a final Application for Payment.

- 2. Submit certified copy of Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. Certified copy of the list shall state that each item has been completed or otherwise resolved.
- B. Submit a written request for final inspection for acceptance. On receipt of request, Design Team will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare final Certificate for Payment after inspection or will advise Contractor of items that must be completed or corrected before certificate will be issued.
 - 1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.
- B. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.
 - 1. Use cleaning products that comply with Green Seal's GS-37, or if GS-37 is not applicable, use products that comply with the California Code of Regulations maximum allowable VOC levels.

2.2 OPERATION AND MAINTENANCE DOCUMENTATION

- A. Directory: Prepare a single, comprehensive directory of operation and maintenance data and materials, listing items and their location to facilitate ready access to desired information.
- B. Organization: Unless otherwise indicated, organize manual into separate sections for each system and subsystem, and separate sections for each piece of equipment not part of a system.

- 1. Dividers: Provide heavy paper dividers with celluloid-covered tabs for each separate Section. Mark each tab to indicate contents. Provide a typed description of the product and major parts of equipment included in the Section on each divider.
- C. Organize data into three-ring binders with identification on front and spine of each binder, and envelopes for folded drawings. Identify each binder on the front and spine with the printed title "OPERATION AND MAINTENANCE MANUAL", Project title or name, year and subject matter covered. Indicate volume number for multiple volume sets of manuals. Include the following:
 - 1. Manufacturer's operation and maintenance documentation.
 - 2. Maintenance and service schedules.
 - 3. Maintenance service contracts. Include name and telephone number of service agent.
 - 4. Emergency instructions.
 - 5. Spare parts list and local sources of maintenance materials.
 - 6. Wiring diagrams.
 - 7. Copies of warranties. Include procedures to follow and required notifications for warranty claims

2.3 RECORD DRAWINGS

- A. Record Prints: Maintain a set of prints of the Contract Drawings and Shop Drawings, incorporating new and revised drawings as modifications are issued. Mark to show actual installation where installation varies from that shown originally. Accurately record information in an acceptable drawing technique.
 - 1. Identify and date each record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.
- B. Record Digital Data Files: Immediately before inspection for Certificate of Substantial Completion, review marked-up record prints with Architect. When authorized, prepare a full set of corrected digital data files of the Contract Drawings.
 - 1. Format: Annotated PDF electronic file.

PART 3 - EXECUTION

3.1 EXAMINATION AND PREPARATION

- A. Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance.
 - 1. Verify compatibility with and suitability of substrates.
 - 2. Examine roughing-in for mechanical and electrical systems.
 - 3. Examine walls, floors, and roofs for suitable conditions.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
- C. Take field measurements as required to fit the Work properly. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication.
- D. Verify space requirements and dimensions of items shown diagrammatically on Drawings.

3.2 CONSTRUCTION LAYOUT

A. Before proceeding to lay out the Work, verify layout information shown on Drawings.

3.3 INSTALLATION

- A. Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 - 1. Make vertical work plumb and make horizontal work level.
 - 2. Conceal wiring in finished areas unless otherwise indicated.
 - 3. Maintain minimum headroom clearance of 96 inches in occupied spaces and 90 inches in unoccupied spaces.
- B. Comply with manufacturer's written instructions and recommendations.
- C. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.

- D. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed.
- E. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place. Where size and type of attachments are not indicated, verify size and type required for load conditions.
 - 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Owner.
- F. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.
- G. Use products, cleaners, and installation materials that are not considered hazardous.

3.4 CUTTING AND PATCHING

- A. Provide temporary support of work to be cut.
- B. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.
- C. Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to prevent interruption to occupied areas.
- D. Cutting: Cut in-place construction using methods least likely to damage elements retained or adjoining construction.
 - 1. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
- E. Patch with durable seams that are as invisible as possible. Provide materials and comply with installation requirements specified in other Sections.
 - Restore exposed finishes of patched areas and extend finish restoration into adjoining construction in a manner that will minimize evidence of patching and refinishing.

- 2. Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance.
- 3. Where patching occurs in a painted surface, prepare substrate and apply primer and intermediate paint coats appropriate for substrate over the patch, and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.

3.5 CLEANING

- A. Clean Project site and work areas daily, including common areas. Dispose of materials lawfully.
 - 1. Remove liquid spills promptly.
 - 2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.
 - 3. Remove debris from concealed spaces before enclosing the space.
- B. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion:
 - 1. Clean Project site and grounds, in areas disturbed by construction activities. Sweep paved areas; remove stains, spills, and foreign deposits. Rake grounds that are neither planted nor paved to a smooth, even-textured surface.
 - 2. Sweep paved areas broom clean. Remove spills, stains, and other foreign deposits.
 - 3. Remove labels that are not permanent.
 - 4. Clean transparent materials, including mirrors. Remove excess glazing compounds.
 - 5. Clean exposed finishes to a dust-free condition, free of stains, films, and foreign substances. Sweep concrete floors broom clean.
 - 6. Vacuum carpeted surfaces.
 - 7. Wipe surfaces of mechanical and electrical equipment. Remove excess lubrication and foreign substances. Clean plumbing fixtures. Clean light fixtures, lamps, globes, and reflectors.

3.6 OPERATION AND MAINTENANCE MANUAL PREPARATION

A. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.

- B. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
 - 1. Prepare supplementary text if manufacturers' standard printed data are unavailable and where the information is necessary for proper operation and maintenance of equipment or systems.
- C. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams.

3.7 DEMONSTRATION AND TRAINING

- A. Contractor to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system. Include a detailed review of the following:
 - 1. Include instruction for basis of system design and operational requirements, review of documentation, emergency procedures, operations, adjustments, troubleshooting, maintenance, and repairs.
- B. Contractor shall train Owner's teaching faculty on the online monitoring functionality of new system.

SECTION 01 7419 - CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL

PART 1 - GENERAL (Not Used)

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 PLAN IMPLEMENTATION

- A. General: Provide handling, containers, storage, signage, transportation, and other items as required to implement waste management plan during the entire duration of the Contract.
- B. Training: Train workers, subcontractors, and suppliers on proper waste management procedures, as appropriate for the Work occurring at Project site.
 - 1. Review locations established for recycling and disposal.

3.2 RECYCLING WASTE

A. Packaging:

- Cardboard and Boxes: Break down packaging into flat sheets. Bundle and store in a dry location.
- 2. Polystyrene Packaging: Separate and bag materials.
- 3. Pallets: As much as possible, require deliveries using pallets to remove pallets from Project site. For pallets that remain on-site, break down pallets into component wood pieces and comply with requirements for recycling wood.
- 4. Crates: Break down crates into component wood pieces and comply with requirements for recycling wood.

B. Wood Materials:

- 1. Sort and stack reusable members according to size, type, and length. Separate lumber, engineered wood products, panel products, and treated wood materials.
- 2. Clean Cut-Offs of Lumber: Grind or chip into small pieces.
- 3. Clean Sawdust: Bag sawdust that does not contain painted or treated wood.
- C. Metals: Separate metals by type.

3.3 DISPOSAL OF WASTE

- A. Except for items or materials to be recycled or otherwise reused, remove waste materials from Project site and legally dispose of them in a landfill or incinerator acceptable to authorities having jurisdiction.
- B. Recycle recyclable materials off-site.
- C. Do not burn waste materials.

PART 1 - GENERAL

1.1 WORK INCLUDES

A. Base Bid

- 1. HVAC Contractor: Provide and install heating, ventilating and air conditioning systems as shown on the drawings and as specified herein. Work includes but is not limited to the following:
 - a. Demolition
 - b. Drain piping
 - c. Refrigerant piping and accessories
 - d. Flex connections

B. Work Not Included

1. Materials, equipment or final connections to items of equipment specified or noted on the drawings to be furnished or executed under another contract.

1.2 RELATED WORK

- A. Specified elsewhere:
 - 1. Sections: Architectural / Structural and General Work
 - 2. Section 22 00 20 Mechanical Insulation
 - 3. Division 23 Mechanical Systems

1.3 QUALITY ASSURANCE

A. Use only new material and apparatus of the specified design and manufacturer. Furnish all materials in accordance with latest ANSI, AWWA, ASTM, NFPA, AGA, ASME, IBR, UL standards and other applicable standards or codes.

1.4 SUBMITTALS

A. See Architectural Sections for requirements.

PART 2 - PRODUCTS

2.1 REFRIGERATION PIPING

A. Refrigeration piping shall be Type ACR hard drawn sealed and nitrogen filled special refrigeration duty copper. Fittings shall be wrought copper streamline fittings and all elbows shall be long radius.

- B. Brazing shall be silver alloy having a minimum melting point of 1185°F. Piping shall be filled with oil pumped dry nitrogen during all brazing operations.
- C. After the system is installed and before any piping is insulated, the entire refrigeration circuit must be thoroughly leak tested. The following test procedure is recommended:
 - 1. Remove and plug the connection points of any controls or relief valves that could be damaged by test pressure. Since the compressor is not included in the leak test, front seat both the compressor suction and discharge valves. Open the liquid line shutoff valve at the condenser, any auxiliary valves in the hot gas and liquid lines and the liquid solenoid valve(s). If the solenoid valve(s) is not equipped with a manual opening device, apply control power to the solenoid(s), opening the valve(s).
 - 2. Connect a cylinder of oil-pumped, dry nitrogen to the frontseat port of the compressor discharge valve, if the valve is so equipped. If not, make the connection at the liquid line charging valve. Note: It is important that the pressure of the nitrogen be controlled by a reducing valve. Control is absolutely necessary because the pressure within a full cylinder of nitrogen is in excess of 2,000 psi at room temperature.
 - 3. Set the pressure regulator on the nitrogen cylinder at 150 psig or the leak test pressure specified by local code. Open the shutoff valve on the cylinder and the valve of the manifold and charge enough nitrogen into the system to raise the pressure to 150 psig, or to the pressure required by local code. Close the manifold valve.
 - 4. Using a rubber or rawhide mallet, tap each solder connection sufficiently hard to start any leak that might subsequently open from thermal expansion and contraction or vibration.
 - 5. Test all pipe joints for leaks. First, check the manifold gauge. If the pressure is dropping, a major leak is present. Large leaks are detected by the sound of escaping gas. Smaller leaks are located by brushing each connection with a soap solution and watching for tell-tale bubbles. Adding a small amount of glycerine to the soap solution improves the bubbling action. Make certain that all joints are inspected thoroughly. Mark carefully any spots where leaks occur.
 - 6. After the bubble test is completed, close the cylinder shutoff valve and bleed the test pressure through the unused part of the manifold. Repair any leaks found. Leaks are repaired by disassembling the connection, cleaning the fitting and remaking. No attempt should be made to repair a leak by simply adding brazing material.
 - 7. After the system is assumed to be free of leaks, charge enough refrigerant through the liquid line charging valve to raise the system pressure to approximately 10 psig. Remove the refrigerant connection and charge enough nitrogen into the system to raise the test pressure to 150 psig or to the local code requirement.
 - 8. Check all parts of the system with a halide torch or electronic leak detector. The presence of escaping refrigerant will color the flame of the halide torch green if the leak is small or a dense blue if it is large. An electronic leak detector indicates the presence of a leak by either a gauge reading, signal light or an audible sound. If any leaks are found, relieve the test pressure and repair the faulty area. Recharge the system, as described previously, and allow it to remain under pressure for 24 hours. If, at the end of this period, there is no appreciable

- pressure change, the system may be considered free of leaks. Note: The system pressure will change approximately 3 psig with each 10° F rise or fall in ambient temperature.
- 9. With the testing complete, relieve the test pressure and reconnect any valves or controls that were disconnected previously.

D. Evacuation

- To speed the evacuation, connect the vacuum pump to as many points of the system as possible. To register the vacuum developed by the pump, a reliable vacuum gauge, such as a Zimmerli Gauge or an electronic vacuum gauge, is connected to the liquid line charging valve. The compressor valves are then cracked off of their backseats, moving the valve disc to an intermediate position between the backseat and the frontseat of the valve. Open the liquid line charging valve.
- The vacuum pump shall be started and operated until a vacuum equivalent to 500 microns is registered by the vacuum gauge. The length of time required to achieve the 500 micron reading depends upon the size of the system and the amount of moisture within the system. Failure to reach the required vacuum reading may be due to:
 - a. Presence of a large amount of moisture. This will be removed with continued operation of the vacuum pump.
 - b. Inefficiency of the pump. Leaks within the pump or contaminated pump oil may be the cause. This may be checked by operating the pump against a vacuum gauge.
 - c. A system leak.
- 3. When the system has been evacuated, close the suction valve on the vacuum pump and then stop the pump. Backseat one of the compressor valves and remove the vacuum pump connection. Through this valve port charge enough oil-pumped dry nitrogen into the system to raise the pressure to atmospheric. Re-evacuate the system. Any moisture remaining in the system is absorbed by the dry nitrogen gas and is removed by the second evacuation.
- 4. After the 500 micron vacuum reading has been re-established, close the vacuum pump suction valve and stop the pump. Backseat the compressor valves and allow the system to stand under vacuum for a minimum of 12 hours. If the vacuum reading remains unchanged, the system is ready to receive its charge of refrigerant.
- E. Charge system with proper quantity of refrigerant and lubricant.
- F. Insulate suction line with foamed plastic insulation. See Specification Section 22 00 20.
- G. Forward shop drawing submittals to Architect / Engineer for review. Submittal shall include complete sketch of refrigerant piping system, sizes, fittings and lengths. Indicate on sketch that manufacturer approves layout and that warranty applies. (HVAC Contractor shall note that pipe sizes and layouts on drawings are for the

purpose of establishing a bid price. Final sizing and layout shall be determined and approved by refrigeration equipment manufacturer.)

H. Refrigerant purge and relief shall be piped full size in separate lines to outdoors using materials specified for refrigerant piping.

2.2 REFRIGERATION ACCESSORIES

- A. Furnish and install the following specialties in refrigeration piping from each unit:
 - 1. 1 liquid line catch-all filter-drier sized for 2 psi maximum pressure drop (with 3-valve bypass).
 - 2. 1 solenoid valve with 120 volt, 60 cycle coil on each refrigerant circuit.
 - 3. 1 expansion valve with external equalizer on each refrigerant circuit.
 - 4. 1 liquid indicator with moisture indicating bull's-eyes in each circuit immediately upstream of expansion valve.
 - 5. Charging valves.
 - 6. Hot gas discharge muffler in each compressor circuit. Muffler shall be suitable for horizontal or vertical installation, self-draining.
- B. Acceptable Manufacturers
 - 1. Mueller Brass Company
 - 2. Henry Valve Company
 - 3. Sporlan

2.3 REFRIGERANTS - GENERAL

- A. Recover and Recycle Refrigerants
 - 1. Refrigerant used in centrifugal water chillers should be recovered and / or recycled for reuse, reprocessed (reclaimed), or properly disposed of, whenever it is removed from the equipment. Never release to atmosphere!
 - Always determine recycle or reclaim requirements of the refrigerant <u>before</u>
 beginning recovery procedure. Obtain a chemical analysis of the refrigerant if
 necessary. (Questions about recovered refrigerant and acceptable refrigerant
 quality standards are addressed in ARI Standard 700.)
- B. Refrigerant Handling and Safety
 - Consult manufacturer's Material Safety Data Sheets (MSDS) on refrigerants being handled to understand health, safety, storage, handling and disposal requirements. Use approved containment vessels and refer to appropriate safety standards. Comply with all applicable transportation standards when shipping refrigerant containers.
- C. Service Equipment and Procedures
 - 1. To minimize refrigerant emissions while recovering the refrigerant, use recycling equipment such as a Trane "recycle / recovery system" or equivalent. Use

- equipment and methods which will pull the lowest possible system vacuum while recovering and condensing refrigerant. Equipment capable of pulling a vacuum of less than (500 microns 1.0 mm) of mercury is recommended. Do not open the unit to atmosphere for service work until the refrigerant charge is fully removed/recovered.
- 2. Evacuation prior to charging should be done with a vacuum pump capable of pulling a vacuum of (500 microns 1.0 mm) of mercury or less. The unit should stand for 12 hours and the vacuum should not rise above 2,500 microns (2.5 mm) of mercury. A rise above 2,500 microns (2.5 mm) of mercury indicates a leak test is required to locate and repair any leaks. A leak test will be required on any repaired area. Charge refrigerant into the machine only when it is determined that the machine does not leak or contain moisture. Charge refrigerant into the machine by weight. A proper charge is required for efficient machine operation. When charging is complete, purge or drain charging lines into an approved refrigerant container. Seal all used refrigerant containers with approved closure devices to prevent unused refrigerant from escaping to the atmosphere. Take extra care to properly maintain all service equipment directly supporting refrigerant service work such as gauges, hoses, vacuum pumps, and recycling equipment.
- When cleaning system components or parts, avoid using CFC-11 (R-11) or CFC-113 (R-113). Use only cleaning solvents that do not have ozone depletion factors. Properly dispose of used materials. Refrigeration system cleanup methods using filters and driers are preferred.

PART 3 - EXECUTION

3.1 DEMOLITION

- A. Pertinent Contractor shall remove all existing materials, system components, accessories and related items that will not be re-used.
- B. HVAC Contractor shall ensure that system is inactive before disabling the system. HVAC Contractor shall ensure that removal of system will not compromise the Owner's operations before removal occurs.
- C. Partial removals shall extend back to nearest active main. Provide and install caps or pipe plugs at main for all piping including pneumatic lines.
- D. No piping shall be left open as a result of demolition operations. Cap or plug all open piping (including pneumatic lines). Crimping is not an acceptable means of capping piping.
- E. Refrigerant associated with demolished systems/equipment shall be reclaimed by HVAC Contractor in accord with applicable regulations. Such refrigerant becomes the property of the HVAC Contractor unless stated otherwise.
- F. All hangers and clamps shall be removed as part of demolition work if they are not reused.

G. All removed equipment and materials become the property of the pertinent removing Contractor unless otherwise noted.

3.2 DRAIN LINES

- A. HVAC Contractor shall provide and install a complete drain system from all coil drain pans in all air handling units, fan coils, evaporator coils and cooling coils. On double sloped pans and / or pans with two drain connections provide drains on both sides.
 - 1. Where multiple, stacked cooling coils are used each coil shall have its own drain pan. Provide internal drop tubes from each such pan down to the main drain pan.
- B. All drains shall be trapped. Traps shall be designed to withstand the maximum (positive or negative) pressures imposed on them by service without ponding or retaining water in the pans.
 - Dimension from bottom of pan outlet to trap invert shall be equal to two times unit static pressure (in inches of water) plus unit velocity head (in inches of water).
 - 2. Dimension from bottom of trap to trap outlet shall be equal to two times unit static pressure (in inches of water).
- C. Drain lines shall be the same size as the pan outlet connections.
- D. All drain lines shall slope uniformly to termination point at slope of 1/8" per foot.
- E. Terminate drain lines at floor drains with indirect connection.

END 23 0510

PART 1 - GENERAL

1.1 WORK INCLUDES

A. Base Bid

- 1. Test and Balance Contractor: Test, adjust and balance air and piping systems. Work includes but is not limited to the following.
- 2. Test and Balance
 - a. Air systems
 - b. Control system tests
 - c. Reports

1.2 RELATED WORK

- A. Specified elsewhere:
 - 1. Sections: Architectural / Structural and General Work:
 - 2. Division 23 Mechanical
 - 3. Division 26 Electrical

1.3 JOB CONDITIONS

- A. Heating, ventilating, and air conditioning equipment shall be completely installed and in continuous operation to accomplish the testing, adjusting and balancing work specified. Complete air balancing prior to hydronic balancing.
- B. Perform testing, adjusting and balancing when outside conditions approximate design conditions for heating and cooling functions or when the system is operating at design capacity.
- C. The Architect / Engineer may be present during testing and balancing to verify that specified procedures are followed.

1.4 QUALITY ASSURANCE

- A. Testing and balancing shall be performed by independent firms specializing in such work.
 - 1. The Test and Balance Contractor shall not be related to the Plumbing or HVAC Contractor in any business enterprise.
- B. Only qualified personnel shall perform testing and balancing work.

- C. Submit evidence that the personnel who will perform the testing and balancing of the project systems are qualified personnel for review by the Architect / Engineer prior to performing the work.
- D. Submit a list of completed projects successfully tested and balanced by the submitted qualified personnel for review by the Architect / Engineer, prior to performing the work.
- E. Perform all corrective measures caused by faulty installation. Retest, readjust and rebalance systems until satisfactory results are achieved.

1.5 DEFINITION

- A. Qualified personnel are:
 - 1. Personnel who have been certified by one of the following test and balance organizations.
 - a. AABC Associated Air Balance Council.
 - b. Certified TBAB Certified Testing, Balancing and Adjusting Bureau.
 - c. NEBB National Environmental Balancing Bureau, Illinois Chapter.
 - d. SMARTA Sheet Metal, Air Conditioning & Roofing Contractors Trade Association of Illinois.
 - e. TABIC Test & Balancing Institute for Certification.

1.6 SUBMITTALS

- A. Submit data sheets on each item of testing equipment for Architect / Engineer review. Include name of device, manufacturer's name, model number, latest date of calibration and correction factors.
- B. Submit a report containing all test data and other related information recorded during testing and balancing, placed on appropriate forms for Architect / Engineer review.

 Reports shall certify that the methods used and results achieved are as specified.

1.7 REVERIFICATION

A. During Substantial Completion Inspection, a percentage (not more than 5%) of the recorded data will be subject to reverification by the Architect / Engineer. Take instrument readings as directed. Test points will be in normally accessible locations and randomly selected by Architect / Engineer.

PART 2 - PRODUCTS

2.1 AIR BALANCE INSTRUMENTS

- A. Velometer with probes and Pitot tube.
- B. Rotating vane anemometer.

- C. ASHRAE standard Pitot tubes stainless steel 5/16 outside diameter, lengths 18" and 36".
- D. Magnehelic differential air pressure gauges, 0 to 0.5", 0 to 1.0" and 0 to 5.0" water pressure ranges, each arranged as a portable unit for use with a standard Pitot tube.
- E. Combination inclined-vertical portable manometer, range 0 to 5.0" water.
- F. Portable-type hook gauge, range 0 to 12" water.
- G. Portable flexible U-tube manometer, magnetic mounting clips, range 0 to 18" water.
- H. Conical or pyramidal shaped hood.

2.2 SYSTEM PERFORMANCE MEASURING INSTRUMENTS

- A. Insertion thermometers, with graduations at 0.1°F or contact pyrometer.
- B. Sling psychrometer.
- C. Tachometer, centrifugal type.
- D. Revolution counter.
- E. Clamp-on volt-ammeter.
- F. Recorders, portable type for temperature and humidity.

PART 3 - EXECUTION

3.1 DRIVES

A. All VAV systems shall be provided with new, appropriately sized drives such that the full range of the pertinent VFD's is available for control of duct static pressure. VAV systems shall not be balanced using the VFD's.

3.2 AIR SYSTEMS

- A. Test, adjust and balance systems in accord with the following:
 - 1. Preliminary:
 - a. Identify and list size, type and manufacturer of all equipment to be tested, including air terminals. Inspect all system components for proper installation and operation.
 - b. Use manufacturers' ratings for all equipment to make calculations except where field test shows ratings to be impractical.
 - c. Verify that all instruments are accurately calibrated and maintained.
 - d. Install clean filters.

2. Central System:

- a. Test, adjust and record supply, return fan RPM to design requirements within the limits of mechanical equipment provided.
- b. Test and record motor voltage and running amperes including motor nameplate data and starter heater ratings.
- c. Make pitot tube traverse of main supply, exhaust and return ducts, determine and record cfm at fans and adjust fans to design cfm.
- d. Test and record system static pressure, suction and discharge.
- e. Test and adjust system for design minimum outside air, cfm.
- f. Test and adjust systems for design return air, cfm.
- g. Test and record heating apparatus entering air temperatures, dry bulb.
- h. Test and record cooling apparatus entering air temperatures, dry bulb and wet bulb.
- i. Test and record heating apparatus leaving air temperatures, dry bulb.
- j. Test and record cooling apparatus leaving air temperatures, dry bulb and wet bulb.
- 3. Distribution: Adjust zones or branch ducts to proper design cfm, supply and return.

4. Air Terminals:

- a. Identify each air terminal from reports as to location and determine required flow reading.
- b. Test and adjust each air terminal to within 10% of design requirement.
- Test procedure on air terminals shall include comparison of specified fpm velocity and observed velocity, adjustment of terminal and comparison of specified cfm and observed cfm after adjustment.
- d. Adjust flow patterns from air terminal units to minimize drafts to extent design and equipment permits.

5. Verification:

- a. Prepare summation of readings of observed cfm for each system, compare with specified cfm and verify that duct losses are within specified allowable range. Determine coil and filter static pressure drops.
- b. Verify design cfm at fans as described above.

3.3 TESTING, BALANCING AND ADJUSTING

- A. At the completion of the installation of the air distribution systems, the following tests shall be made.
- B. All instruments for testing are to be furnished by this Contractor and must be reviewed by the Architect / Engineer before use on job. All readings shall be recorded on approved forms. All instruments used shall be recently calibrated and same set of instruments shall be used throughout the balancing procedures.

- C. The air distribution systems shall be balanced with the volume dampers, splitter dampers and adjustable air extractors in the duct systems as follows:
 - All air handling equipment in building shall be operating during the balancing procedures. Supply systems with return fans shall be balanced in the 100% outside air position. System shall then be set in minimum outside air position and manual volume damper after automatic return air dampers adjusted to maintain constant supply air volume. Supply systems without return fans shall be adjusted to the minimum outside air position. All filters shall be new and clean. All volume dampers and extractors shall be set at 2/3 open position.
 - 2. Fans shall be adjusted to specified air quantities by using rotating vane anemometer traverse over entering air face of cooling coils in built-up air handling systems, with pitot tube and inclined manometer or a velometer having proper duct jet attachment for traverse at fan inlet.
 - 3. Individual outlets shall be adjusted to specified air quantities using either the "proportional method" starting at last outlet and working towards main or the "trial and error" method, with a velometer having proper attachment or a rotating vane anemometer.
 - 4. Branch ducts (having more than one outlet) shall be adjusted to specified air quantities by using a pitot tube and inclined anemometer or a velometer having proper duct jet attachment for traverse as near to takeoff as practical.
 - 5. Above procedures shall essentially be followed for all systems and shall be repeated until proper balance is achieved throughout systems from -0% to +10% of specified air quantities.
- D. After balance is completed, lock nuts or stop screws shall be installed at all volume dampers and extractors to permit them to be shut-off but prevent opening beyond the set balance position.
- E. For more detailed step-by-step procedures the Balancing and Adjustment Manual for Air Distribution Systems published by Sheet Metal and Air Conditioning Contractors National Association shall be used.
- F. All readings taken throughout the balancing procedure shall be recorded on approved forms and upon completion of balancing and testing shall be "certified" as being correct and submitted for review.
- G. Upon receipt of "certified" balancing forms and letter of certification that all balancing, testing and adjusting is completed in accordance with plans and specifications and that all systems are operating properly, the Architect / Engineer or his designated representative will conduct a balance inspection. Furnish personnel, instruments and equipment as required to assist the Architect / Engineer during this "balance inspection".
- H. If during the above balance inspection any portion of any system is found in improper balance, that entire system shall be rebalanced and a new report submitted. The rebalance shall be checked and if again found in improper balance, this Contractor shall again rebalance and submit report. This procedure shall be repeated until the systems are properly balanced to the satisfaction of the Architect / Engineer.

3.4 AUTOMATIC CONTROL SYSTEM

- A. The Temperature Control Contractor shall set and adjust automatically operated devices to achieve specified sequence of operation.
- B. Testing organization shall verify all controls for proper calibration and list those controls requiring adjustment by temperature control system installer.

3.5 SYSTEM PERFORMANCE REPORT

- A. After the conclusion of balancing operations, make temporary installation of portable recorders and simultaneously record temperatures and humidity during summer and winter conditions at representative locations in each system.
- B. Architect / Engineer will direct all test locations.
- C. Make recordings during summer and winter for a seven-day period, continuous over a weekend, and including at least one period of operation at outside conditions within 5°F wet bulb temperature of maximum summer design condition and within 10°F dry bulb temperature of minimum winter design condition.
- D. Report of test results shall include original recording and two reproductions.

3.6 SUBMISSION OF REPORTS

- A. Fill in test results on approved forms.
- B. Submit three certified copies of required test reports to the Architect / Engineer for review.
- C. Include in report a list of instruments used and test date of calibration.
- D. Submittals shall be legibly signed by the individual(s) responsible for the accuracy of the

END 23 0593

PART 1 - GENERAL

1.1 WORK INCLUDES

- A. Base Bid
 - 1. Provide and install complete insulation systems as shown on the drawings and as specified herein. Work includes, but is not limited to, the following:
 - a. HVAC Contractor: Insulating of:
 - (1) Refrigerant piping
 - (2) Ductwork

1.2 RELATED WORK

- A. Specified elsewhere:
 - 1. Division 23 Mechanical Systems

1.3 QUALITY ASSURANCE

- A. Installations shall be by qualified personnel thoroughly trained and experienced in the skills required and completely familiar with the manufacturer's current recommended methods of installation as well as the requirements of the work.
- B. All insulation shall be applied in accordance with MICA "Commercial and Industrial Insulation Standards".

1.4 SUBMITTALS

- A. See Architectural Sections.
- B. Provide submittals for:
 - 1. Equipment insulation
 - 2. Plastic insulation jacket
 - 3. Duct insulation

PART 2 - PRODUCTS

2.1 INSULATION

A. Materials of insulation shall be manufactured by Johns-Manville, Schuller, Owens Corning, Knauf, Rubatex, Armstrong, Certain-Teed (acceptable manufacturers will vary depending upon material being specified herein after).

- B. Insulation shall be rigid glass fiber with fire retardant vapor barrier jacket. Insulation of fittings shall be in accordance with manufacturer's recommendations using glass fiber wrapping and formed jacket.
- C. Insulating materials and APT jackets shall conform to latest NFPA and IECC standards with flame-spread rating not to exceed 25 and smoke developed rating not to exceed 50. Vapor barrier jackets shall have a water vapor permeability rating not to exceed .02 perms when tested in accordance with ASTM Standard E-96.

2.2 MINERAL-FIBER INSULATION INSTALLATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - On duct sides with dimensions larger than 18 inches, place pins 16 inches
 o.c. each way, and 3 inches maximum from insulation joints. Install
 additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory-or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - Install vapor stops for ductwork and plenums operating below 50 deg F
 at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic
 applied in a Z-shaped pattern over insulation face, along butt end of
 insulation, and over the surface. Cover insulation face and surface to be

insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
 - Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
 - b. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - On duct sides with dimensions larger than 18 inches, space pins 16 inches
 o.c. each way, and 3 inches maximum from insulation joints. Install
 additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory-or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic

applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

PART 3 - EXECUTION

3.1 DUCT INSULATION

- A. Supply, outdoor, relief air (between dampers and outdoors) and exhaust air (between dampers and outdoors) duct insulation shall be the following:
 - 1. Mineral Fiber Blanket: 1-1/2 inches thick, 1.0 lb / cu. ft. nominal density.
- B. Access doors and fire dampers shall be insulated with the following:
 - 1. Mineral Fiber Blanket: 1-1/2 inches thick, 1.0 lb / cu. ft. nominal density.
- C. Exposed ductwork in finished areas shall be insulated with the following:
 - 1. Mineral Fiber Board Insulation: 1-1/2 inches thick, 2 3 lb / cu. ft. nominal density.
 - 2. Board insulation to be painted shall have all service jacket.
 - 3. Board insulation not to be painted shall have foil jacket.
 - 4. Supply ductwork from heating only make-up air units does not require duct insulation. The discharge air temperature shall not exceed in a difference of 15 degrees F compared to the surrounding space temperature.
 - 5. Exposed round ductwork to be double wall insulated spiral.
- D. Finish areas include storage rooms, server rooms and bus
- E. Concealed type 1 kitchen hood exhaust duct and plenum insulation shall be fire-rated blanket or board; thickness as required to achieve 2 hour fire rating.
- F. Generator exhaust and muffler insulation shall be fire-rated blanket or board; thickness as required to achieve 2 hour fire rating.

END 23 0700

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls.
- B. Related Sections include the following:
 - 1. Division 23 Section "Meters and Gages for HVAC Piping" for measuring equipment that relates to this Section.
 - 2. Division 23 Section "Sequence of Operations for HVAC Controls" for requirements that relate to this Section.

1.3 DEFINITIONS

- A. DDC: Direct digital control.
- B. I/O: Input/output.
- C. LonWorks: A control network technology platform for designing and implementing interoperable control devices and networks.
- D. MS/TP: Master slave/token passing.
- E. PC: Personal computer.
- F. PID: Proportional plus integral plus derivative.
- G. RTD: Resistance temperature detector.
- H. IP: Internet protocol.

1.4 SYSTEM PERFORMANCE

A. Comply with the following performance requirements:

- 1. Graphic Display: Display graphic with minimum 20 dynamic points with current data within 10 seconds.
- 2. Graphic Refresh: Update graphic with minimum 20 dynamic points with current data within 8 seconds.
- 3. Object Command: Reaction time of less than two seconds between operator command of a binary object and device reaction.
- 4. Object Scan: Transmit change of state and change of analog values to control units or workstation within six seconds.
- 5. Alarm Response Time: Annunciate alarm at workstation within 45 seconds. Multiple workstations must receive alarms within five seconds of each other.
- 6. Program Execution Frequency: Run capability of applications as often as five seconds, but selected consistent with mechanical process under control.
- 7. Performance: Programmable controllers shall execute DDC PID control loops, and scan and update process values and outputs at least once per second.
- 8. Reporting Accuracy and Stability of Control: Report values and maintain measured variables within tolerances as follows:
 - a. Water Temperature: Plus or minus 1 deg F.
 - b. Water Flow: Plus or minus 5 percent of full scale.
 - c. Water Pressure: Plus or minus 2 percent of full scale.
 - d. Space Temperature: Plus or minus 1 deg F.
 - e. Ducted Air Temperature: Plus or minus 1 deg F.
 - f. Outside Air Temperature: Plus or minus 2 deg F.
 - g. Dew Point Temperature: Plus or minus 3 deg F.
 - h. Temperature Differential: Plus or minus 0.25 deg F.
 - i. Airflow (Pressurized Spaces): Plus or minus 3 percent of full scale.
 - j. Airflow (Measuring Stations): Plus or minus 5 percent of full scale.
 - k. Air Pressure (Space): Plus or minus 0.01-inch wg.
 - I. Air Pressure (Ducts): Plus or minus 0.1-inch wg.
 - m. Carbon Dioxide: Plus or minus 50 ppm.
 - n. Electrical: Plus or minus 5 percent of reading.

1.5 SUBMITTALS

- A. Product Data: Include manufacturer's technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.
 - 1. DDC System Hardware: Bill of materials of equipment indicating quantity, manufacturer, and model number. Include technical data for operator workstation equipment, interface equipment, control units, transducers/transmitters, sensors, actuators, valves, relays/switches, control panels, and operator interface equipment.

- 2. Control System Software: Include technical data for operating system software, operator interface, color graphics, and other third-party applications.
- 3. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Bill of materials of equipment indicating quantity, manufacturer, and model number.
 - 2. Schematic flow diagrams showing fans, pumps, coils, dampers, valves, and control devices.
 - 3. Wiring Diagrams: Power, signal, and control wiring.
 - 4. Details of control panel faces, including controls, instruments, and labeling.
 - 5. Written description of sequence of operation.
 - 6. Schedule of dampers including size, leakage, and flow characteristics.
 - 7. Schedule of valves including flow characteristics.
 - 8. DDC System Hardware:
 - a. Wiring diagrams for control units with termination numbers.
 - b. Schematic diagrams and floor plans for field sensors and control hardware.
 - c. Schematic diagrams for control, communication, and power wiring, showing trunk data conductors and wiring between operator workstation and control unit locations.
 - 9. Control System Software: List of color graphics indicating monitored systems, data (connected and calculated) point addresses, output schedule, and operator notations.
 - 10. Controlled Systems:
 - a. Schematic diagrams of each controlled system with control points labeled and control elements graphically shown, with wiring.
 - b. Scaled drawings showing mounting, routing, and wiring of elements including bases and special construction.
 - c. Written description of sequence of operation including schematic diagram.
 - d. Points list.
- C. Data Communications Protocol Certificates: Certify that each proposed DDC system component complies with ASHRAE 135.
- D. Data Communications Protocol Certificates: Certify that each proposed DDC system component complies with LonWorks.
- E. Samples for Initial Selection: For each color required, of each type of thermostat or sensor cover with factory-applied color finishes.
- F. Samples for Verification: For each color required, of each type of thermostat or sensor cover.
- G. Software and Firmware Operational Documentation: Include the following:

- 1. Software operating and upgrade manuals.
- 2. Program Software Backup: On a magnetic media or compact disc, complete with data files.
- 3. Device address list.
- 4. Printout of software application and graphic screens.
- 5. Software license required by and installed for DDC workstations and control systems.
- H. Software Upgrade Kit: For Owner to use in modifying software to suit future systems revisions or monitoring and control revisions.
- I. Qualification Data: For Installer and manufacturer.
- J. Field quality-control test reports.
- K. Operation and Maintenance Data: For HVAC instrumentation and control system to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - 1. Maintenance instructions and lists of spare parts for each type of control device and compressed-air station.
 - 2. Interconnection wiring diagrams with identified and numbered system components and devices.
 - 3. Keyboard illustrations and step-by-step procedures indexed for each operator function.
 - 4. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.
 - 5. Calibration records and list of set points.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Automatic control system manufacturer's authorized representative who is trained and approved for installation of system components required for this Project.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with ASHRAE 135 for DDC system components.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Factory-Mounted Components: Where the equipment manufacturer's factory packaged controls are capable of providing the BAS interface specified, the equipment manufacturer's controls may be utilized. Where controls are provided by other than the equipment manufacturer, arrange for shipping of required devices to equipment manufacturer for factory mounting as required for proper equipment function.
- B. System Software: Update to latest version of software at Project completion.

1.8 COORDINATION

- A. Coordinate location of thermostats and other exposed control sensors with plans and room details before installation.
- B. Coordinate equipment with Division 27 Section "Clock Systems" to achieve compatibility with equipment that interfaces with that system.
- C. Coordinate equipment with Division 26 Section "Network Lighting Controls" to achieve compatibility with equipment that interfaces with that system.
- D. Coordinate equipment with Division 28 Section "Fire Detection and Alarm" to achieve compatibility with equipment that interfaces with that system.
- E. Coordinate supply of conditioned electrical branch circuits for control units and operator workstation.
- F. Coordinate equipment with Division 26 Section "Electrical Power Monitoring and Control" to achieve compatibility of communication interfaces.
- G. Coordinate equipment with Division 26 Section "Panelboards" to achieve compatibility with starter coils and annunciation devices.
- H. Coordinate equipment with Division 26 Section "Motor-Control Centers" to achieve compatibility with motor starters and annunciation devices.

1.9 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Replacement Materials: One replacement for each unique valve motor, controller, thermostat, positioning relay.
 - 2. Maintenance Materials: Five thermostat adjusting key(s).

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work.
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 CONTROL SYSTEM

- A. Manufacturers (Note: See drawings for Contractor scope.):
 - 1. Alpha Controls.
 - 2. Entec.
 - 3. Standalone.
- B. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, and accessories to control mechanical systems.
- C. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, accessories, and software connected to distributed controllers operating in multiuser, multitasking environment on token-passing network and programmed to control mechanical systems. An operator workstation shall permit interface with the network via dynamic color graphics with each mechanical system, building floor plan, and control device depicted by point-and-click graphics.
- D. Expand existing temperature control system software database to include all new controlled mechanical equipment. Control system shall be accessible via campus Ethernet network.

2.3 DDC EQUIPMENT

- A. Operator Workstation and Printer: Existing operator workstation and printer are to be retained.
 - 1. Application Software: Modify existing temperature control software as necessary to provide the level of control specified herein for new and existing equipment and systems.
 - a. I/O capability from operator station.
 - b. System security for each operator via software password and access levels.
 - c. Automatic system diagnostics; monitor system and report failures.
 - d. Database creation and support.
 - e. Automatic and manual database save and restore.
 - f. Dynamic color graphic displays with up to 10 screen displays at once.
 - g. Custom graphics generation and graphics library of HVAC equipment and symbols.
 - h. Alarm processing, messages, and reactions.
 - i. Trend logs retrievable in spreadsheets and database programs.
 - j. Alarm and event processing.
 - k. Object and property status and control.
 - I. Automatic restart of field equipment on restoration of power.
 - m. Data collection, reports, and logs. Include standard reports for the following:

- 1) Current values of all objects.
- 2) Current alarm summary.
- 3) Disabled objects.
- 4) Alarm lockout objects.
- 5) Logs.
- n. Custom report development.
- Utility and weather reports.
- p. Workstation application editors for controllers and schedules.
- q. Maintenance management.
- 2. Custom Application Software:
 - a. English language oriented.
 - b. Full-screen character editor/programming environment.
 - c. Allow development of independently executing program modules with debugging/simulation capability.
 - d. Support conditional statements.
 - e. Support floating-point arithmetic with mathematic functions.
 - f. Contains predefined time variables.
- B. Diagnostic Terminal Unit: Portable notebook-style, PC-based microcomputer terminal capable of accessing system data by connecting to system network with minimum configuration as follows:
 - 1. System: With one integrated USB 2.0 port, integrated Intel Pro 10/100 (Ethernet), integrated audio, bios, and hardware monitoring.
 - 2. Processor: Core 2, 2.0 GHz.
 - 3. Random-Access Memory: 1.0 GB.
 - 4. Graphics: Video adapter, minimum 1024 x 768 pixels, 64-MB video memory.
 - 5. Monitor: 15 inches, LCD color.
 - 6. Keyboard: QWERTY 105 keys in ergonomic shape.
 - 7. Hard-Disk Drive: 80 Gb.
 - 8. CD-ROM Read/Write Drive: 48x24x48.
 - 9. Pointing Device: Touch pad or other internal device.
- C. Control Units: Modular, comprising processor board with programmable, nonvolatile, random-access memory; local operator access and display panel; integral interface equipment; and backup power source.
 - 1. Units monitor or control each I/O point; process information; execute commands from other control units, devices, and operator stations; and download from or upload to operator workstation or diagnostic terminal unit.
 - 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 - a. Global communications.

- b. Discrete/digital, analog, and pulse I/O.
- c. Monitoring, controlling, or addressing data points.
- d. Software applications, scheduling, and alarm processing.
- e. Testing and developing control algorithms without disrupting field hardware and controlled environment.

3. Standard Application Programs:

- a. Electric Control Programs: Demand limiting, duty cycling, automatic time scheduling, start/stop time optimization, night setback/setup, on-off control with differential sequencing, staggered start, antishort cycling, PID control, DDC with fine tuning, and trend logging.
- b. HVAC Control Programs: Optimal run time, supply-air reset, and enthalpy switchover.
- c. Programming Application Features: Include trend point; alarm processing and messaging; weekly, monthly, and annual scheduling; energy calculations; run-time totalization; and security access.
- d. Remote communications.
- e. Maintenance management.
- f. Units of Measure: Inch-pound and SI (metric).
- 4. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
- 5. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.
- 6. LonWorks Compliance: Control units shall use LonTalk protocol and communicate using EIA/CEA 709.1 datalink/physical layer protocol.
- D. Local Control Units: Modular, comprising processor board with electronically programmable, nonvolatile, read-only memory; and backup power source.
 - 1. Units monitor or control each I/O point, process information, and download from or upload to operator workstation or diagnostic terminal unit.
 - 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 - a. Global communications.
 - b. Discrete/digital, analog, and pulse I/O.
 - c. Monitoring, controlling, or addressing data points.
 - 3. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
 - 4. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.
 - 5. LonWorks Compliance: Control units shall use LonTalk protocol and communicate using EIA/CEA 709.1 datalink/physical layer protocol.

- E. I/O Interface: Hardwired inputs and outputs may tie into system through controllers. Protect points so that shorting will cause no damage to controllers.
 - 1. Binary Inputs: Allow monitoring of on-off signals without external power.
 - 2. Pulse Accumulation Inputs: Accept up to 10 pulses per second.
 - 3. Analog Inputs: Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals.
 - 4. Binary Outputs: Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation with three-position (on-off-auto) override switches and status lights.
 - 5. Analog Outputs: Provide modulating signal, either low voltage (0- to 10-V dc) or current (4 to 20 mA) with status lights, two-position (auto-manual) switch, and manually adjustable potentiometer.
 - 6. Tri-State Outputs: Provide two coordinated binary outputs for control of three-point, floating-type electronic actuators.
 - 7. Universal I/Os: Provide software selectable binary or analog outputs.
- F. Power Supplies: Transformers with Class 2 current-limiting type or overcurrent protection; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:
 - 1. Output ripple of 5.0 mV maximum peak to peak.
 - 2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.
 - 3. Built-in overvoltage and overcurrent protection and be able to withstand 150 percent overload for at least 3 seconds without failure.
- G. Power Line Filtering: Internal or external transient voltage and surge suppression for workstations or controllers with the following:
 - 1. Minimum dielectric strength of 1000 V.
 - 2. Maximum response time of 10 nanoseconds.
 - 3. Minimum transverse-mode noise attenuation of 65 dB.
 - 4. Minimum common-mode noise attenuation of 150 dB at 40 to 100 Hz.

2.4 UNITARY CONTROLLERS

- A. Unitized, capable of stand-alone operation with sufficient memory to support its operating system, database, and programming requirements, and with sufficient I/O capacity for the application.
 - 1. Configuration: Local keypad and display; diagnostic LEDs for power, communication, and processor; wiring termination to terminal strip or card connected with ribbon cable; memory with bios; and 72-hour battery backup.
 - 2. Operating System: Manage I/O communication to allow distributed controllers to share real and virtual object information and allow central monitoring and alarms. Perform

- scheduling with real-time clock. Perform automatic system diagnostics; monitor system and report failures.
- 3. ASHRAE 135 Compliance: Communicate using read (execute and initiate) and write (execute and initiate) property services defined in ASHRAE 135. Reside on network using MS/TP datalink/physical layer protocol and have service communication port for connection to diagnostic terminal unit.
- 4. LonWorks Compliance: Communicate using EIA/CEA 709.1 datalink/physical layer protocol using LonTalk protocol.
- 5. Enclosure: Dustproof rated for operation at 32 to 120 deg F.
- 6. Enclosure: Waterproof rated for operation at 40 to 150 deg F.

2.5 ANALOG CONTROLLERS

- A. Step Controllers: 6- or 10-stage type, with heavy-duty switching rated to handle loads and operated by electric motor.
- B. Electric, Outdoor-Reset Controllers: Remote-bulb or bimetal rod-and-tube type, proportioning action with adjustable throttling range, adjustable set point, scale range minus 10 to plus 70 deg F, and single- or double-pole contacts.
- C. Electronic Controllers: Wheatstone-bridge-amplifier type, in steel enclosure with provision for remote-resistance readjustment. Identify adjustments on controllers, including proportional band and authority.
 - 1. Single controllers can be integral with control motor if provided with accessible control readjustment potentiometer.
- D. Fan-Speed Controllers: Solid-state model providing field-adjustable proportional control of motor speed from maximum to minimum of 55 percent and on-off action below minimum fan speed. Controller shall briefly apply full voltage, when motor is started, to rapidly bring motor up to minimum speed. Equip with filtered circuit to eliminate radio interference.

2.6 ELECTRONIC SENSORS

- A. Description: Vibration and corrosion resistant; for wall, immersion, or duct mounting as required.
- B. Thermistor Temperature Sensors and Transmitters:
 - 1. Manufacturers:
 - a. BEC Controls Corporation.
 - b. Ebtron, Inc.
 - c. Heat-Timer Corporation.
 - d. I.T.M. Instruments Inc.
 - e. MAMAC Systems, Inc.
 - f. RDF Corporation.

- 2. Accuracy: Plus or minus 0.5 deg F at calibration point.
- 3. Wire: Twisted, shielded-pair cable.
- 4. Insertion Elements in Ducts: Single point; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft..
- 5. Averaging Elements in Ducts: 72 inches long, flexible; use where prone to temperature stratification or where ducts are larger than 10 sq. ft..
- 6. Insertion Elements for Liquids: Brass or stainless-steel socket with minimum insertion length of 2-1/2 inches.
- 7. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 - a. Set-Point Adjustment: Concealed.
 - b. Set-Point Indication: Exposed.
 - c. Thermometer: Red-reading glass.
- 8. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.
- 9. Room Security Sensors: Stainless-steel cover plate with insulated back and security screws.

C. RTDs and Transmitters:

- 1. Manufacturers:
 - a. BEC Controls Corporation.
 - b. MAMAC Systems, Inc.
 - c. RDF Corporation.
- 2. Accuracy: Plus or minus 0.2 percent at calibration point.
- 3. Wire: Twisted, shielded-pair cable.
- 4. Insertion Elements in Ducts: Single point, 8 inches or 18 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft..
- 5. Averaging Elements in Ducts: 48 inches long, rigid; use where prone to temperature stratification or where ducts are larger than 9 sq. ft.; length as required.
- 6. Insertion Elements for Liquids: Brass socket with minimum insertion length of 2-1/2 inches.
- 7. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 - a. Set-Point Adjustment: Concealed.
 - b. Set-Point Indication: Exposed.
 - c. Thermometer: Red-reading glass.
- 8. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.
- 9. Room Security Sensors: Stainless-steel cover plate with insulated back and security screws.
- D. Humidity Sensors: Bulk polymer sensor element.
 - 1. Manufacturers:
 - a. BEC Controls Corporation.
 - b. General Eastern Instruments.

- c. MAMAC Systems, Inc.
- d. ROTRONIC Instrument Corp.
- e. TCS/Basys Controls.
- f. Vaisala.
- 2. Accuracy: 5 percent full range with linear output.
- 3. Room Sensor Range: 20 to 80 percent relative humidity.
- 4. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 - a. Set-Point Adjustment: Exposed.b. Set-Point Indication: Exposed.
- 5. Duct Sensor: 20 to 80 percent relative humidity range with element guard and mounting plate.
- 6. Outside-Air Sensor: 20 to 80 percent relative humidity range with mounting enclosure, suitable for operation at outdoor temperatures of minus 22 to plus 185 deg F.
- 7. Duct and Sensors: With element guard and mounting plate, range of 0 to 100 percent relative humidity.

E. Pressure Transmitters/Transducers:

- 1. Manufacturers:
 - a. BEC Controls Corporation.
 - b. General Eastern Instruments.
 - c. MAMAC Systems, Inc.
 - d. ROTRONIC Instrument Corp.
 - e. TCS/Basys Controls.
 - f. Vaisala.
- 2. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 - a. Accuracy: 2 percent of full scale with repeatability of 0.5 percent.
 - b. Output: 4 to 20 mA.
 - c. Building Static-Pressure Range: 0- to 0.25-inch wg.
 - d. Duct Static-Pressure Range: 0- to 5-inch wg.
- 3. Water Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure; linear output 4 to 20 mA.
- 4. Water Differential-Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure and tested to 300-psig; linear output 4 to 20 mA.
- 5. Differential-Pressure Switch (Air or Water): Snap acting, with pilot-duty rating and with suitable scale range and differential.
- 6. Pressure Transmitters: Direct acting for gas, liquid, or steam service; range suitable for system; linear output 4 to 20 mA.

- F. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 - 1. Set-Point Adjustment: Exposed.
 - 2. Set-Point Indication: Exposed.
- G. Room sensor accessories include the following:
 - 1. Insulating Bases: For sensors located on exterior walls.
 - 2. Adjusting Key: As required for calibration and cover screws.
- H. Photocell, see Section 23 0993 for description.

2.7 STATUS SENSORS

- A. Status Inputs for Fans: Differential-pressure switch with pilot-duty rating and with adjustable range of 0- to 5-inch wg.
- B. Status Inputs for Pumps: Differential-pressure switch with pilot-duty rating and with adjustable pressure-differential range of 8 to 60 psig, piped across pump.
- C. Status Inputs for Electric Motors: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.
- D. Voltage Transmitter (100- to 600-V ac): Comply with ISA 50.00.01, single-loop, self-powered transmitter, adjustable, with suitable range and 1 percent full-scale accuracy.
- E. Power Monitor: 3-phase type with disconnect/shorting switch assembly, listed voltage and current transformers, with pulse kilowatt hour output and 4- to 20-mA kW output, with maximum 2 percent error at 1.0 power factor and 2.5 percent error at 0.5 power factor.
- F. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements.
- G. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.
- H. Water-Flow Switches: Bellows-actuated mercury or snap-acting type with pilot-duty rating, stainless-steel or bronze paddle, with appropriate range and differential adjustment, in NEMA 250, Type 1 enclosure.
 - 1. Manufacturers:
 - a. BEC Controls Corporation.
 - b. I.T.M. Instruments Inc.

2.8 GAS DETECTION EQUIPMENT

A. Manufacturers:

- 1. B. W. Technologies.
- 2. CEA Instruments, Inc.
- 3. Ebtron, Inc.
- Gems Sensors Inc.
- 5. Greystone Energy Systems Inc.
- 6. Honeywell International Inc.; Home & Building Control.
- 7. INTEC Controls, Inc.
- 8. I.T.M. Instruments Inc.
- 9. MSA Canada Inc.
- 10. QEL/Quatrosense Environmental Limited.
- 11. Sauter Controls Corporation.
- 12. Sensidyne, Inc.
- 13. TSI Incorporated.
- 14. Vaisala.
- 15. Vulcain Inc.
- B. Carbon Dioxide Sensor and Transmitter: Single detectors using solid-state infrared sensors; suitable over a temperature range of 23 to 130 deg F and calibrated for 0 to 2 percent, with continuous or averaged reading, 4- to 20-mA output;, for wall mounting.
- C. Oxygen Sensor and Transmitter: Single detectors using solid-state zircon cell sensing; suitable over a temperature range of minus 32 to plus 1100 deg F and calibrated for 0 to 5 percent, with continuous or averaged reading, 4- to 20-mA output; for wall mounting.
- D. Occupancy Sensor: Passive infrared, with time delay, daylight sensor lockout, sensitivity control, and 180-degree field of view with vertical sensing adjustment; for flush mounting.

2.9 THERMOSTATS

A. Manufacturers:

- 1. Same as Direct Digital Controller Manufacturer.
- B. Combination Thermostat and Fan Switches: Line-voltage thermostat with push-button or lever-operated fan switch.
 - 1. Label switches "FAN ON-OFF".
 - 2. Mount on single electric switch box.

- C. Low-Voltage, On-Off Thermostats: NEMA DC 3, 24-V, bimetal-operated, mercury-switch type, with adjustable or fixed anticipation heater, concealed set-point adjustment, 55 to 85 deg F set-point range, and 2 deg F maximum differential.
- D. Line-Voltage, On-Off Thermostats: Bimetal-actuated, open contact or bellows-actuated, enclosed, snap-switch or equivalent solid-state type, with heat anticipator; listed for electrical rating; with concealed set-point adjustment, 55 to 85 deg F set-point range, and 2 deg F maximum differential.
 - 1. Electric Heating Thermostats: Equip with off position on dial wired to break ungrounded conductors.
 - 2. Selector Switch: Integral, manual on-off-auto.
- E. Remote-Bulb Thermostats: On-off or modulating type, liquid filled to compensate for changes in ambient temperature; with copper capillary and bulb, unless otherwise indicated.
 - 1. Bulbs in water lines with separate wells of same material as bulb.
 - 2. Bulbs in air ducts with flanges and shields.
 - 3. Averaging Elements: Copper tubing with either single- or multiple-unit elements, extended to cover full width of duct or unit; adequately supported.
 - 4. Scale settings and differential settings are clearly visible and adjustable from front of instrument.
 - 5. On-Off Thermostat: With precision snap switches and with electrical ratings required by application.
 - 6. Modulating Thermostats: Construct so complete potentiometer coil and wiper assembly is removable for inspection or replacement without disturbing calibration of instrument.
- Fire-Protection Thermostats: Listed and labeled by an NRTL acceptable to authorities having jurisdiction; with fixed or adjustable settings to operate at not less than 75 deg F above normal maximum operating temperature, and the following:
 - 1. Reset: Manual.
 - 2. Reset: Automatic, with control circuit arranged to require manual reset at central control panel; with pilot light and reset switch on panel labeled to indicate operation.
- G. Immersion Thermostat: Remote-bulb or bimetal rod-and-tube type, proportioning action with adjustable throttling range and adjustable set point.
- H. Airstream Thermostats: Two-pipe, fully proportional, single-temperature type; with adjustable set point in middle of range, adjustable throttling range, plug-in test fitting or permanent pressure gage, remote bulb, bimetal rod and tube, or averaging element.
- I. Electric, Low-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, manual- or automatic- reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or below set point.
 - 1. Bulb Length: Minimum 20 feet.
 - 2. Quantity: One thermostat for every 20 sq. ft. of coil surface.

- J. Electric, High-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, manual- or automatic- reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or above set point.
 - 1. Bulb Length: Minimum 20 feet.
 - 2. Quantity: One thermostat for every 20 sq. ft. of coil surface.
- K. Heating/Cooling Valve-Top Thermostats: Proportional acting for proportional flow, with molded-rubber diaphragm, remote-bulb liquid-filled element, direct and reverse acting at minimum shutoff pressure of 25 psig, and cast housing with position indicator and adjusting knob.
- L. Thermostats shall be provided by the Temperature Control Subcontractor and compatible with the BAS. Night setback and thermostat settings shall be controlled by BAS.

2.10 HUMIDISTATS

A. Manufacturers:

- 1. MAMAC Systems, Inc.
- 2. ROTRONIC Instrument Corp.
- B. Duct-Mounting Humidistats: Electric insertion, 2-position type with adjustable, 2 percent throttling range, 20 to 80 percent operating range, and single- or double-pole contacts.

2.11 ACTUATORS

- A. Electric Motors: Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 - 1. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 2. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
 - 3. Nonspring-Return Motors for Valves Larger Than NPS 2-1/2: Size for running torque of 150 in. X lbf and breakaway torque of 300 in. X lbf.
 - 4. Spring-Return Motors for Valves Larger Than NPS 2-1/2: Size for running and breakaway torque of 150 in. X lbf.
 - 5. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 150 in. X lbf and breakaway torque of 300 in. X lbf.
 - 6. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running and breakaway torque of 150 in. X lbf.

- B. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 - 1. Manufacturers:
 - a. Schneider Electric.
 - 2. Valves: Size for torque required for valve close off at maximum pump differential pressure.
 - 3. Dampers: Size for running torque calculated as follows:
 - a. Parallel-Blade Damper with Edge Seals: 7 inch-lb/sq. ft. of damper.
 - b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 - c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft of damper.
 - d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
 - e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 - f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.
 - 4. Coupling: V-bolt and V-shaped, toothed cradle.
 - 5. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
 - 6. Fail-Safe Operation: Mechanical, spring-return mechanism. Provide external, manual gear release on nonspring-return actuators.
 - 7. Power Requirements (Two-Position Spring Return): 24-V ac.
 - 8. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.
 - 9. Proportional Signal: 2-to 10-V dc or 4 to 20 mA, and 2-to 10-V dc position feedback signal.
 - 10. Temperature Rating: Minus 22 to plus 122 deg F.
 - 11. Temperature Rating (Smoke Dampers): Minus 22 to plus 250 deg F.
 - 12. Run Time: 12 seconds open, 5 seconds closed.

2.12 CONTROL VALVES

- A. Manufacturers:
 - 1. Schneider Electric.
 - 2. Siemens.
 - 3. Honeywell.
- B. Control Valves: Factory fabricated, of type, body material, and pressure class based on maximum pressure and temperature rating of piping system, unless otherwise indicated.
- C. Hydronic system globe valves shall have the following characteristics:
 - 1. NPS 2 and Smaller: Class 125 bronze body, bronze trim, rising stem, renewable composition disc, and screwed ends with backseating capacity repackable under pressure.
 - 2. NPS 2-1/2 and Larger: Class 125 iron body, bronze trim, rising stem, plug-type disc, flanged ends, and renewable seat and disc.

- 3. Internal Construction: Replaceable plugs and stainless-steel or brass seats.
 - a. Single-Seated Valves: Cage trim provides seating and guiding surfaces for plug on top and bottom.
 - b. Double-Seated Valves: Balanced plug; cage trim provides seating and guiding surfaces for plugs on top and bottom.
- 4. Sizing: 3-psig maximum pressure drop at design flow rate or the following:
 - a. Two Position: Line size.
 - b. Two-Way Modulating: Either the value specified above or twice the load pressure drop, whichever is more.
 - c. Three-Way Modulating: Twice the load pressure drop, but not more than value specified above.
- 5. Flow Characteristics: Two-way valves shall have equal percentage characteristics; three-way valves shall have linear characteristics.
- 6. Close-Off (Differential) Pressure Rating: Combination of actuator and trim shall provide minimum close-off pressure rating of 150 percent of total system (pump) head for two-way valves and 100 percent of pressure differential across valve or 100 percent of total system (pump) head.
- D. Butterfly Valves: 200-psig, 150-psig maximum pressure differential, ASTM A 126 cast-iron or ASTM A 536 ductile-iron body and bonnet, extended neck, stainless-steel stem, field-replaceable EPDM or Buna N sleeve and stem seals.
 - 1. Body Style: Wafer.
 - 2. Disc Type: Aluminum bronze.
 - 3. Sizing: 1-psig maximum pressure drop at design flow rate.

2.13 DAMPERS

- A. Manufacturers:
 - 1. Air Balance Inc.
 - 2. Don Park Inc.; Autodamp Div.
 - 3. TAMCO (T. A. Morrison & Co. Inc.).
 - 4. United Enertech Corp.
 - 5. Vent Products Company, Inc.
- B. Dampers: AMCA-rated, opposed-blade design; 0.108-inch- minimum thick, galvanized-steel or 0.125-inch- minimum thick, extruded-aluminum frames with holes for duct mounting; damper blades shall not be less than 0.064-inch- thick galvanized steel with maximum blade width of 8 inches and length of 48 inches.
 - 1. Secure blades to 1/2-inch- diameter, zinc-plated axles using zinc-plated hardware, with oil-impregnated sintered bronze blade bearings, blade-linkage hardware of zinc-plated

- steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade.
- 2. Operating Temperature Range: From minus 40 to plus 200 deg F.
- 3. Edge Seals, Standard Pressure Applications: Closed-cell neoprene.
- 4. Edge Seals, Low-Leakage Applications: Use inflatable blade edging or replaceable rubber blade seals and spring-loaded stainless-steel side seals, rated for leakage at less than 10 cfm per sq. ft. of damper area, at differential pressure of 4-inch wg when damper is held by torque of 50 in. X lbf; when tested according to AMCA 500D.

2.14 CONTROL CABLE

A. Electronic and fiber-optic cables for control wiring are specified in Division 27 Section "Communications Horizontal Cabling."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that conditioned power supply is available to control units and operator workstation.
- B. Verify that pneumatic piping and duct-, pipe-, and equipment-mounted devices are installed before proceeding with installation.

3.2 INSTALLATION

- A. Install software in control units and operator workstation(s). Implement all features of programs to specified requirements and as appropriate to sequence of operation.
- B. Connect and configure equipment and software to achieve sequence of operation specified.
- C. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 48 inches above the floor.
 - 1. Install averaging elements in ducts and plenums in crossing or zigzag pattern.
- D. Install guards on thermostats in the following locations:
 - 1. Entrances.
 - 2. Public areas.
 - 3. Where indicated.
- E. Install automatic dampers according to Division 23 Section "Air Duct Accessories."

- F. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.
- G. Install labels and nameplates to identify control components according to Division 23 Section "Identification for HVAC Piping and Equipment."
- H. Install hydronic instrument wells, valves, and other accessories according to Division 23 Section "Hydronic Piping."
- I. Install refrigerant instrument wells, valves, and other accessories according to Division 23 Section "Refrigerant Piping."
- J. Install duct volume-control dampers according to Division 23 Sections specifying air ducts.
- K. Install electronic and fiber-optic cables according to Division 27 Section "Communications Horizontal Cabling."

3.3 ELECTRICAL WIRING AND CONNECTION INSTALLATION

- A. Install raceways, boxes, and cabinets according to Division 26 Section "Raceway and Boxes for Electrical Systems."
- B. Install building wire and cable according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- C. Install signal and communication cable according to Division 27 Section "Communications Horizontal Cabling."
 - 1. Conceal cable, except in mechanical rooms and areas where other conduit and piping are exposed.
 - 2. Install exposed cable in raceway.
 - 3. Install concealed cable in raceway.
 - 4. Bundle and harness multiconductor instrument cable in place of single cables where several cables follow a common path.
 - 5. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
 - 6. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.
 - 7. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.
- D. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.
- E. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.
 - 2. Test and adjust controls and safeties.
 - 3. Test calibration of electronic controllers by disconnecting input sensors and stimulating operation with compatible signal generator.
 - 4. Test each point through its full operating range to verify that safety and operating control set points are as required.
 - 5. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Adjust PID actions.
 - 6. Test each system for compliance with sequence of operation.
 - 7. Test software and hardware interlocks.

C. DDC Verification:

- 1. Verify that instruments are installed before calibration, testing, and loop or leak checks.
- 2. Check instruments for proper location and accessibility.
- 3. Check instrument installation for direction of flow, elevation, orientation, insertion depth, and other applicable considerations.
- 4. Check instrument tubing for proper fittings, slope, material, and support.
- 5. Check installation of air supply for each instrument.
- 6. Check flow instruments. Inspect tag number and line and bore size, and verify that inlet side is identified and that meters are installed correctly.
- 7. Check pressure instruments, piping slope, installation of valve manifold, and self-contained pressure regulators.
- 8. Check temperature instruments and material and length of sensing elements.
- 9. Check control valves. Verify that they are in correct direction.
- 10. Check DDC system as follows:
 - a. Verify that DDC controller power supply is from emergency power supply, if applicable.
 - b. Verify that wires at control panels are tagged with their service designation and approved tagging system.
 - c. Verify that spare I/O capacity has been provided.
 - d. Verify that DDC controllers are protected from power supply surges.
- D. Replace damaged or malfunctioning controls and equipment and repeat testing procedures.

3.5 ADJUSTING

A. Calibrating and Adjusting:

- 1. Calibrate instruments.
- 2. Make three-point calibration test for both linearity and accuracy for each analog instrument
- 3. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.
- 4. Control System Inputs and Outputs:
 - a. Check analog inputs at 0, 50, and 100 percent of span.
 - b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
 - c. Check digital inputs using jumper wire.
 - d. Check digital outputs using ohmmeter to test for contact making or breaking.
 - e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.

5. Flow:

- a. Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.
- b. Manually operate flow switches to verify that they make or break contact.

6. Pressure:

- a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.
- b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.

7. Temperature:

- a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.
- b. Calibrate temperature switches to make or break contacts.
- 8. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.
- 9. Stroke and adjust control valves and dampers with positioners, following manufacturer's recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.
- 10. Provide diagnostic and test instruments for calibration and adjustment of system.
- 11. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.

- B. Adjust initial temperature and humidity set points.
- C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Division 01 Section "Demonstration and Training."

END 23 0900

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Single-wall rectangular ducts and fittings.
- 2. Double-wall round ducts and fittings.
- 3. Sheet metal materials.
- 4. Duct liner.
- 5. Sealants and gaskets.
- 6. Hangers and supports.
- 7. Louvers.
- 8. Fabric duct.
- 9. Single-wall round ducts and fittings.

B. Related Sections:

- 1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
- 2. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".

1.4 SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.

B. Shop Drawings:

- 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
- 2. Factory- and shop-fabricated ducts and fittings.
- 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
- 4. Elevation of top of ducts.
- 5. Dimensions of main duct runs from building grid lines.
- 6. Fittings.
- 7. Reinforcement and spacing.
- 8. Seam and joint construction.
- 9. Penetrations through fire-rated and other partitions.
- 10. Equipment installation based on equipment being used on Project.
- 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
- 12. Hangers and supports, including methods for duct and building attachment and vibration isolation.

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-5, "Longitudinal Seams Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.2 DOUBLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Lindab Inc.
 - 2. McGill AirFlow LLC.
 - 3. SEMCO Incorporated.
 - 4. Sheet Metal Connectors, Inc.
 - 5. Lapine Metal Products
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension) of the inner duct.
- C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.
 - Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Transverse Joints - Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - a. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
 - Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Seams - Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - a. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - b. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.
 - 3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Inner Duct: Minimum 0.028-inch perforated galvanized sheet steel having 3/32-inch- diameter perforations, with overall open area of 23 percent.
- E. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

1. Cover insulation with polyester film complying with UL 181, Class 1.

2.3 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.
- D. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.
- E. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 DUCT LINER

- A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. CertainTeed Corporation; Insulation Group.
 - b. Johns Manville.
 - c. Knauf Insulation.
 - d. Owens Corning.
 - 2. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.

2.5 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:

- 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
- 2. Tape Width: 4 inches.
- 3. Sealant: Modified styrene acrylic.
- 4. Water resistant.
- 5. Mold and mildew resistant.
- 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
- 7. Service: Indoor and outdoor.
- 8. Service Temperature: Minus 40 to plus 200 deg F.
- 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.

C. Water-Based Joint and Seam Sealant:

- 1. Application Method: Brush on.
- 2. Solids Content: Minimum 65 percent.
- 3. Shore A Hardness: Minimum 20.
- 4. Water resistant.
- 5. Mold and mildew resistant.
- 6. VOC: Maximum 75 g/L (less water).
- 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
- 8. Service: Indoor or outdoor.
- 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- 10. VOC: Maximum 395 g/L.
- D. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
- E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

2.6 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.

2.7 LOUVERS

- A. Provide and install extruded aluminum louvers in walls as shown on drawings and as specified herein.
- B. Intake louvers shall be 4" deep double hook design arranged to permit bottom of duct to hook over bottom blade for drainage to outside.
- C. Louvers in other walls shall have wall flange on sides, top and bottom.
- D. All louvers shall be constructed of minimum .081 extrusions, with reinforcing bosses and bars as required.
- E. Furnish 5/8" mesh removable bird screens on inside of all louvers, constructed of .063 wire with extruded frames.
- F. Louvers shall have color anodized finish. Final louver finish shall be selected by Architect/Engineer at shop drawing review stage. Submit color samples with shop drawings.
- G. All louvers shall have AMCA rating and label. The manufacturer shall furnish air pressure loss and water penetration data with all submittals.

- H. Acceptable manufacturers: Air Balance Inc., Chicago, Illinois; The Airolite Co., Marietta, Ohio; American Warming and Vent Co., Inc., Toledo, Ohio; Arrow United, Long Island City, New York; and Vent Products Co., Inc., Chicago, Illinois. Ruskin.
- I. Provide insulated panels to blank off unused portion(s) of louvers not used for ducted connections:
 - 1. Panels shall be insulated with 1" thick rigid closed cell foam enclosed in 22 gage (minimum) sheet metal
 - 2. Prime panels with rust-resistant paint, color selected by Architect.
 - 3. Panels shall be anodized aluminum in color to match louver.
- J. Forward shop drawing submittals to the Architect/Engineer for review.

2.8 SINGLE-WALL ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards".
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Lindab Inc.
 - b. McGill AirFlow LLC.
 - c. SEMCO Incorporated.
 - d. Sheet Metal Connectors, Inc.
 - e. Spiral Manufacturing Co., Inc.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards", "Transverse Joints Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards", "Seams Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.
- D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards", "90 Degree Tees and Laterals", "Conical Tees", for static-pressure class, applicable

sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. All ducts shall be of size indicated on the drawings. In no case shall the indicated duct size be changed without written approval of the Architect / Engineer.
- C. Duct sizes shown on drawings are met inside area. Where duct lining is specified, increase duct sizes to allow for lining.
- D. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- E. Install round and flat-oval ducts in maximum practical lengths.
- F. Install ducts with fewest possible joints.
- G. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- H. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- I. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- J. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- K. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- L. Where ducts pass through non-fire rated interior partitions, seal around duct with non-combustible material.
- M. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal

flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

- N. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.
- O. Protect duct interiors from moisture, construction debris and dust, and other foreign materials.

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.
- F. Support all horizontal ducts up to 46" wide with field punched steel strap hangers, sized per SMACNA, placed down side, turned under bottom of ducts and securely fastened to the building construction in an approved manner. Ducts from 47" up to 70" wide shall have 1.50" x 3/16" angle iron trapeze hangers with 3/8" diameter rods attached to building construction. Ducts from 71" up to 118" wide shall have 2.50" x 2" x 5/16" angle iron trapeze hangers with ½" diameter rods attached to building construction. Space horizontal duct supports not more than 8'-0" apart. All hangers and stiffeners shall be galvanized steel.
- G. No piping, conduit, ceiling supports or any other building element shall be suspended from duct supports.
- H. Carefully check the arrangement of ducts and dimensions of all working spaces at the building so that there will be no interference with the running of ducts. Carefully lay out all openings in floors and walls.
- I. Increase duct sizes gradually, not exceeding 15 divergence or convergence in duct runs.
- J. Where plenum-type takeoffs or runouts are shown and at all flex duct connections to rectangular ducts, the area of opening into main duct shall be a minimum of 150% of branch duct area.

3.3 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Outdoor, Supply-Air Ducts: Seal Class A.
 - 3. Outdoor, Exhaust Ducts: Seal Class C.
 - 4. Outdoor, Return-Air Ducts: Seal Class C.
 - 5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
 - 6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than2-Inch wg: Seal Class A.
 - 7. Unconditioned Space, Exhaust Ducts: Seal Class C.
 - 8. Unconditioned Space, Return-Air Ducts: Seal Class B.
 - 9. Conditioned Space, Supply-Air Ducts in Pressure Classes2-Inch wg and Lower: Seal Class C.
 - 10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
 - 11. Conditioned Space, Exhaust Ducts: Seal Class B.
 - 12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.

- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.7 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

3.8 DUCT SCHEDULE

A. Supply Ducts:

- 1. Ducts Connected to Fan Coil Units, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 2. Ducts Connected to Constant-Volume Air-Handling Units:
 - a. Pressure Class: Positive 3-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.

B. Return Ducts:

- 1. Ducts Connected to Fan Coil Units, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.

C. Exhaust Ducts:

- 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
- 2. Ducts Connected to Commercial Kitchen Hoods: Comply with NFPA 96.
 - a. Exposed to View: Type 304, 14 gauge, stainless-steel sheet, No. 4 finish.
 - b. Concealed: Type 304, stainless-steel sheet, No. 2D finish or 14 gauge carbon steel sheet.
 - c. Welded seams and joints.
 - d. Pressure Class: Positive or negative 3-inch wg.
 - e. SMACNA Leakage Class: 3.

D. Liner:

- 1. Return Air Ducts (Where Shown on the Drawings): Fibrous glass, Type I, 1 inch thick.
- 2. Exhaust / Relief Ducts (Where Shown on the Drawings): Fibrous glass, Type I, 1 inch thick.
- E. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.

- c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
- 2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-3, "Round Duct Elbows."
 - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam or welded.
- F. Exposed Ductwork in Finished Areas:
 - 1. Exposed round ductwork to be double wall insulated.
 - 2. Exposed rectangular ductwork to be board insulated and paintable.

END 23 3113

PART 1 - GENERAL

1.1 WORK INCLUDES

A. Base Bid

- 1. HVAC Contractor: Work includes the following:
 - a. Packaged, air-cooled, refrigerant compressor and condenser units.

1.2 RELATED WORK

- A. Specified elsewhere:
 - 1. 23 05 53 Identification for HVAC Piping and Equipment
 - 2. 23 09 00 Instrumentation and Control for HVAC
 - 3. 23 09 93 Sequence of Operations for HVAC Controls

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For compressor and condenser units. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.
 - 2. Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Fabricate and label refrigeration system according to ASHRAE 15, "Safety Standard for Refrigeration Systems."

1.5 WARRANTY

- Α. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of compressor and condenser units that fail in materials or workmanship within specified warranty period.
 - 1. Failures include the following:
 - Compressor failure. a.
 - Condenser coil leak. b.
 - 2. Warranty Period (Compressor Only Including Parts and Labor): Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 COMPRESSOR AND CONDENSER UNITS, AIR COOLED

- Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the A. following:
 - 1. Carrier Corporation; Commercial HVAC Systems.
 - 2. Daikin.
 - 3. Trane.
- Description: Factory assembled and tested; consisting of compressor, condenser coil, fan, motors, B. refrigerant reservoir, and operating controls.
- C. Compressor: Scroll, hermetically sealed, with rubber vibration isolators.
 - 1. Motor: Single speed, and includes thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
- D. Refrigerant: R-410A.
- E. Condenser Coil: Seamless copper-tube, aluminum-fin coil; circuited for integral liquid subcooler, with removable drain pan and brass service valves with service ports.
- F. Condenser Fan: Direct-drive, aluminum propeller fan; with permanently lubricated, totally enclosed fan motor with thermal-overload protection.
- Accessories: G.
 - 1. Crankcase heater.
 - Cycle Protector: Automatic-reset timer to prevent rapid compressor cycling. 2.

2

Electronic programmable thermostat to control compressor and condenser unit and 3. evaporator fan.

- 4. Filter-dryer.
- 5. High-Pressure Switch: Automatic-reset switch cycles compressor off on high refrigerant pressure.
- 6. Low-Pressure Switch: Automatic-reset switch cycles compressor off on low refrigerant pressure.
- 7. PE mounting base.
- 8. Precharged and insulated suction and liquid tubing.
- 9. Thermostatic expansion valve.
- 10. Time-Delay Relay: Continues operation of evaporator fan after compressor shuts off.
- H. Unit Casing: Galvanized steel, finished with baked enamel; with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Mount service valves, fittings, and gage ports on exterior of casing.

2.2 SOURCE QUALITY CONTROL

- A. Energy Efficiency: Equal to or greater than prescribed by ASHRAE/IESNA 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings," Section 6, "Heating, Ventilating, and Air-Conditioning."
- B. Testing Requirements: Factory test sound-power-level ratings according to ARI 270.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install units level and plumb, firmly anchored in locations indicated.
- B. Install roof-mounting units on equipment supports specified in Section 077200 "Roof Accessories."
- C. Maintain manufacturer's recommended clearances for service and maintenance.
- D. Loose Components: Install electrical components, devices, and accessories that are not factory mounted.

3.2 CONNECTIONS

- A. Comply with requirements for piping in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties." Section 15179 "Hydronic Piping Specialties." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

- C. Connect precharged refrigerant tubing to unit's quick-connect fittings. Install tubing so it does not interfere with access to unit. Install furnished accessories.
- D. Connect refrigerant piping to air-cooled compressor and condenser units; maintain required access to unit. Install furnished field-mounted accessories.
- E. Perform tests and inspections and prepare test reports.
- F. Tests and Inspections:
 - 1. Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping and specialties. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test. Certify compliance with test parameters.
 - 2. Leak Test: After installation, charge system with refrigerant and oil and test for leaks. Repair leaks, replace lost refrigerant and oil, and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor operation and unit operation, product capability, and compliance with requirements.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 5. Verify proper airflow over coils.
- C. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.

3.4 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss,

- expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Refer to Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls" for control wiring, and sequence of operation.
- K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Division 08 Section "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
- M. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- N. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- O. Identify refrigerant piping and valves according to Division 23 Section "Identification for HVAC Piping and Equipment."
- P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
- Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."

R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 23 Section "Escutcheons for HVAC Piping."

3.5 PIPE JOINT CONSTRUCTION

- A. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
- B. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

3.6 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - 1. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 - 2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 - 3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.

3.7 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 - 4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

- A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

- C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Open shutoff valves in condenser water circuit.
 - 2. Verify that compressor oil level is correct.
 - 3. Open compressor suction and discharge valves.
 - 4. Open refrigerant valves except bypass valves that are used for other purposes.
 - 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END 23 6200

PART 1 - GENERAL

1.1 WORK INCLUDES

A. Base Bid

- 1. HVAC Contractor: Provide and install air handling systems as shown on the drawings and as specified. Work includes, but is not limited to, the following:
 - a. Air handling units and rooftop units
 - b. Fans and accessories

B. Work Not Included:

 Materials, equipment or final connections to items of equipment specified or noted on the drawings to be furnished or executed under another contract.

1.2 RELATED WORK

- A. Specified elsewhere:
 - 1. Sections: Architectural / Structural and General Work
 - 2. Division 23 Mechanical Systems

1.3 QUALITY ASSURANCE

A. Use only new material and apparatus of the specified design and manufacturer. Furnish all materials in accordance with latest ANSI, ASTM, NFPA, AMCA, SMACNA, ASHRAE, UL, MICA, AABC, ARI, ADC standards and other applicable standards or codes.

1.4 SUBMITTALS

A. See Architectural Sections for requirements.

PART 2 - PRODUCTS

2.1 AIR HANDLING UNITS AND ROOFTOP UNITS

A. Unit Casing

 Unit manufacturer shall ship unit in segments as specified by the contractor for ease of installation in tight spaces. The entire air handler shall be constructed of galvanized steel. Casing finished to meet ASTM B117 250-hour salt-spray test. The removal of access panels or access doors shall not affect the structural integrity of the unit. All removable panels shall be gasketed. All doors shall have gasketing around full perimeter to prevent air leakage. Contractor shall be

- responsible to provide connection flanges and all other framework that is needed to properly support the unit.
- Casing performance Casing air leakage shall not exceed leak class 6 (CL = 6) per ASHRAE 111 at specified casing pressure, where maximum casing leakage (cfm/100 ft2 of casing surface area) = CL X P0.65.
- 3. Air leakage shall be determined at 1.00 times maximum casing static pressure up to 8 inches w.g. Specified air leakage shall be accomplished without the use of caulk. Total estimated air leakage shall be reported for each unit in CFM, as a percentage of supply air, and as an ASHRAE 111 Leakage Class.
- 4. Under 55F supply air temperature and design conditions on the exterior of the unit of 81F dry bulb and 73F wet bulb, condensation shall not form on the casing exterior. The AHU manufacturer shall provide tested casing thermal performance for the scheduled supply air temperature plotted on a psychrometric chart. The design condition on the exterior of the unit shall also be plotted on the chart. If tested casing thermal data is not available, AHU manufacturer shall provide, in writing to the Engineer and Owner, a guarantee against condensation forming on the unit exterior at the stated design conditions above. The guarantee shall note that the AHU manufacturer will cover all expenses associated with modifying units in the field should external condensate form on them. In lieu of AHU manufacturer providing a written guarantee, the installing contractor must provide additional external insulation on AHU to prevent condensation.
- 5. Unit casing (wall/floor/roof panels and doors) shall be able to withstand up to 1.5 times design static pressure, or 8-inch w.g., whichever is less, and shall not exceed 0.0042 per inch of panel span (L/240).
- 6. Floor panels shall have tread plate flooring aluminum tread plate minimum 0.125".
- 7. Unit casing panels shall be 2-inch double-wall construction, with solid galvanized exterior and solid galvanized interior, to facilitate cleaning of unit interior.
- 8. Unit casing panels (roof, walls, floor) and doors shall be provided with a minimum thermal resistance (R-value) of 13 Hr*Ft2*°F/BTU.
- 9. Unit casing panels (roof, walls, floor) and external structural frame members shall be completely insulated filling the entire panel cavity in all directions so that no voids exist. Panel insulation shall comply with NFPA 90A.
- 10. Casing panel inner liners must not extend to the exterior of the unit or contact the exterior frame. A mid-span, no-through-metal, internal thermal break shall be provided for all unit casing panels.
- 11. Access panels and/or access doors shall be provided in all sections to allow easy access to drain pan, coil(s), motor, drive components and bearings for cleaning, inspection, and maintenance.
- 12. Access panels and doors shall be fully removable without the use of specialized tools to allow complete access of interior surfaces.
- 13. The fan section and discharge plenum section shall have 2" of additional insulation and perforated liner for sound attenuation.

B. Access Doors

- 1. Access doors shall be 2-inch double-wall construction. Interior and exterior shall be of the same construction as the interior and exterior wall panels.
- 2. All doors downstream of the cooling coil shall be provided with a thermal break construction of door panel and door frame.

- 3. Gasketing shall be provided around the full perimeter of the doors to prevent air leakage.
- 4. Door hardware shall be surface-mounted to prevent through-cabinet penetrations that could likely weaken the casing leakage and thermal performance.
- 5. Handle hardware shall be designed to prevent unintended closure.
- 6. Access doors shall be hinged and removable without the use of specialized tools to allow.
- 7. Hinges shall be interchangeable with the door handle hardware to allow for alternating door swing in the field to minimize access interference due to unforeseen job site obstructions.
- 8. Door handle hardware shall be adjustable and visually indicate locking position of door latch external to the section.
- 9. All doors shall be a 60-inch high when sufficient unit height is available, or the maximum height allowed by the unit height.
- 10. Multiple door handles shall be provided for each latching point of the door necessary to maintain the specified air leakage integrity of the unit.

C. Primary Drain Pans

- 1. All cooling coil sections shall be provided with an insulated, double-wall, stainless steel drain pan.
- 2. The drain pan shall be designed in accordance with ASHRAE 62.1 being of sufficient size to collect all condensation produced from the coil and sloped in two planes, pitched toward drain connections, promoting positive drainage to eliminate stagnant water conditions when unit is installed level and trapped per manufacturer's requirements. See section 2.07, paragraph F through H for specifications on intermediate drain pans between cooling coils.
- 3. The outlet shall be located at the lowest point of the pan and shall be sufficient diameter to preclude drain pan overflow under any normally expected operating condition.
- 4. All drain pan threaded connections shall be visible external to the unit. Threaded connections under the unit floor shall not be accepted.
- 5. Drain connections shall be of the same material as the primary drain pan and shall extend a minimum 2-1/2-inch beyond the base to ensure adequate room for field piping of condensate traps.
- 6. The installing contractor is responsible to ensure the unit is installed level, trapped in accordance with the manufacturer's requirements, and visually inspected to ensure proper drainage of condensate.
- 7. Coil support members inside the drain pan shall be of the same material as the drain pan and coil casing.
- 8. If drain pans are required for heating coils, access sections, or mixing sections they will be indicated in the plans.

D. Fans

1. Fan sections shall have a minimum of one hinged and latched access door located on the drive side of the unit to allow inspection and maintenance of the fan, motor, and drive components. Construct door(s) per Section 2.04.

- 2. Provide fans of type and class as specified on the schedule. Fan shafts shall be solid steel, coated with a rust-inhibiting coating, and properly designed so that fan shaft does not pass through first critical speed as unit comes up to rated RPM. All fans shall be statically and dynamically tested by the manufacturer for vibration and alignment as an assembly at the operating RPM to meet design specifications. Fans controlled by variable frequency drives shall be statically and dynamically tested for vibration and alignment at speeds between 25% and 100% of design RPM. If fans are not factory-tested for vibration and alignment, the contractor shall be responsible for cost and labor associated with field balancing and certified vibration performance. Fan wheels shall be keyed to fan shafts to prevent slipping.
- 3. All fans, including direct drive plenum fans, shall be mounted on isolation bases. Internally-mounted motor shall be on the same isolation base. Fan and motor shall be internally isolated with spring isolators. Unit sizes up to a nominal 4,000 CFM shall have 1-inch spring isolation. Units with nominal CFM's higher than 4,000 shall have 2-inch springs. A flexible connection (e.g. canvas duct) shall be installed between fan and unit casing to ensure complete isolation. Flexible connection shall comply with NFPA 90A and UL 181 requirements. If fans and motors are not internally isolated, then the entire unit shall be externally isolated from the building, including supply and return duct work, piping, and electrical connections. External isolation shall be furnished by the installing contractor in order to avoid transmission of noise and vibration through the ductwork and building structure.

E. Motors and Drives

- 1. All motors and drives shall be factory-installed and run tested. All motors shall be installed on a slide base to permit adjustment of belt tension. Slide base shall be designed to accept all motor sizes offered by the air-handler manufacturer for that fan size to allow a motor change in the future, should airflow requirements change. Fan sections without factory-installed motors shall have motors field installed by the contractor. The contractor shall be responsible for all costs associated with installation of motor and drive, alignment of sheaves and belts, run testing of the motor, and balancing of the assembly.
- 2. Motors shall meet or exceed all NEMA Standards Publication MG 1 2006 requirements and comply with NEMA Premium efficiency levels when applicable. Motors shall comply with applicable requirements of NEC and shall be UL Listed.
- Fan Motors shall be heavy duty, open drip-proof operable at 460 volts, 60Hz,
 3-phase. If applicable, motor efficiency shall meet or exceed NEMA Premium efficiencies.
- 4. Direct driven fans shall use 2-pole (3600 rpm), 4-pole (1800 rpm) or 6-pole (1200 rpm) motors, NEMA Design B, with Class B insulation capable to operate continuously at 104 deg F (40 deg C) without tripping overloads.
- 5. Motors shall have a +/- 10 percent voltage utilization range to protect against voltage variation.
- 6. Manufacturer shall provide for each fan a nameplate with the following information to assist air balance contractor in start up and service personnel in maintenance. Fan and motor sheave part number. Fan and motor bushing part number. Number of belts and belt part numbers. Fan design RPM and motor HP. Belt tension and deflection. Center distance between shafts

F. Coils

- 1. Coils section header end panel shall be removable to allow for removal and replacement of coils without impacting the structural integrity of the unit.
- 2. Install coils such that headers and return bends are enclosed by unit casing to ensure that if condensate forms on the header or return bends, it is captured by the drain pan under the coil.
- 3. Coils shall be manufactured with plate fins to minimize water carryover and maximize airside thermal efficiency. Fin tube holes shall have drawn and belled collars to maintain consistent fin spacing to ensure performance and air pressure drop across the coil as scheduled. Tubes shall be mechanically expanded and bonded to fin collars for maximum thermal conductivity. Use of soldering or tinning during the fin-to-tube bonding process is not acceptable due to the inherent thermal stress and possible loss of bonding at that joint.
- 4. Construct coil casings of galvanized steel. End supports and tube sheets shall have belled tube holes to minimize wear of the tube wall during thermal expansion and contraction of the tube.
- 5. All coils shall be completely cleaned prior to installation into the air handling unit. Complete fin bundle in direction of airflow shall be degreased and steam cleaned to remove any lubricants used in the manufacturing of the fins, or dirt that may have accumulated, in order to minimize the chance for water carryover.
- 6. ½" tube coils shall have minimum tube thickness of 0.025" and 5/8" tubes shall have minimum tube thickness of 0.024".
- 7. When two or more cooling coils are stacked in the unit, an intermediate drain pan shall be installed between each coil. The intermediate drain pan shall be designed being of sufficient size to collect all condensation produced from the coil and sloped to promote positive drainage to eliminate stagnant water conditions. The intermediate drain pan shall be constructed of the same material as the sections primary drain pan.
- 8. The intermediate drain pan shall begin at the leading face of the water-producing device and be of sufficient length extending downstream to prevent condensate from passing through the air stream of the lower coil.
- 9. Intermediate drain pan shall include downspouts to direct condensate to the primary drain pan. The intermediate drain pan outlet shall be located at the lowest point of the pan and shall be sufficient diameter to preclude drain pan overflow under any normally expected operating condition.

G. Filters

- Provide factory-fabricated filter section of the same construction and finish as
 unit casings. Filter section shall have side access filter guides and access door(s)
 extending the full height of the casing to facilitate filter removal. Construct doors
 in accordance with Section 2.04. Provide fixed filter blockoffs as required to
 prevent air bypass around filters. Blockoffs shall not need to be removed during
 filter replacement. Filters to be of size, and quantity needed to maximize filter
 face area of each particular unit size.
- 2. Filter type, MERV rating, and arrangement shall be provided as defined in project plans and schedule
- 3. Manufacturer shall provide one set of startup filters. Provide two additional sets of filters. One set shall be installed at the completion of the project and the third

set shall be turned over to the Owner as a replacement set. Provide an exterior pressure gauge at the unit to check pressure drop across filters.

H. Dampers

1. All dampers, with the exception of external bypass and multizones (if scheduled), shall be internally mounted. Dampers shall be premium ultra low leak and located as indicated on the schedule and plans. Blade arrangement (parallel or opposed) shall be provided as indicated on the schedule and drawings. Dampers shall be Ruskin CD60 double-skin airfoil design or equivalent for minimal air leakage and pressure drop. Leakage rate shall not exceed 4 CFM/square foot at one inch water gauge complying with ASHRAE 90.1 maximum damper leakage and shall be AMCA licensed for Class 1A. All leakage testing and pressure ratings shall be based on AMCA Standard 500-D. Manufacturer shall submit brand and model of damper(s) being furnished, if not Ruskin CD60.

I. Hood Inlet

1. Inlet hoods for each outside damper shall be provided with a high performance sine-wave moisture eliminator to prevent entrainment of water into the unit from outside air. Wire mesh screens shall not be acceptable as a moisture eliminator. Exhaust hoods shall be provided on exhaust air openings.

J. Discharge Plenum Sections

- Plenums shall be provided as indicated in the schedule and plans to efficiently turn air and provide acoustical attenuation. Discharge plenum opening types and sizes shall be scaled to meet pressure drop requirements scheduled and align with duct takeoffs. Provide additional 2" insulation and perforated liner for sound attenuation.
- 2. Provide grating over bottom opening for the unit.

K. Marine Lights

- 1. Marine lights shall be provided throughout AHUs as indicated on the schedule and plans. Lights shall be instant-on, light-emitting diode (LED) type to minimize amperage draw and shall produce lumens equivalent to a minimum 75W incandescent bulb (1200 lumens). LED lighting shall provide instant-on, white light and have a minimum 50,000 hr life.
- 2. Light fixture shall be weather-resistant, enclosed and gasketed to prevent water and dust intrusion.
- 3. Fixtures shall be designed for flexible positioning during maintenance and service activities for best possible location providing full light on work surface of interest and not being blocked by technician.
- 4. All lights on a unit shall be wired in the factory to a single on-off switch.
- 5. Installing contractor shall be responsible for providing 115V supply to the factory-mounted marine light circuit (unless single-point power is specified to be provided by AHU manufacturer).

23 8500 - Air Handling

L. Convenience Outlets

A 15-amp, 115V GFCI convenience outlet shall be provided by the AHU
manufacturer. The outlet shall be separate from the load side of the equipment
per NEC requirements. Installing contractor shall be responsible for providing
115V supply to the factory-mounted GFCI outlet circuit per NEC (even when
single-point power is specified to be provided by AHU manufacturer).

M. Variable Frequency Drives (VFDs)

- RTU VFDs to be factory installed. AHU variable frequency drives shall be provided, mounted, and wired by the Temperature Control Contractor as indicated on the schedule and drawings. All standard and optional features shall be included within the VFD enclosure, unless otherwise specified. The VFDs shall be UL listed. The listing shall allow mounting in plenum or other air handling compartments. Acceptable VFD manufacturers include: ABB, Square D and Dan Foss.
- 2. The VFD shall convert incoming fixed frequency three-phase AC power into a variable frequency and voltage for controlling the speed of three-phase AC motors. The motor current shall closely approximate a sine wave. Motor voltage shall be varied with frequency to maintain desired motor magnetization current suitable for centrifugal pump and fan control and to eliminate the need for motor derating.
- 3. With the motor's rated voltage applied to the VFD input, the VFD shall allow the motor to produce full rated power at rated amps, RMS fundamental volts, and speed without using the motor's service factor. VFDs utilizing sine weighted/coded modulation (with or without 3rd harmonic injection) must provide data verifying that the motors will not draw more than full load current during full load and full speed operation.
- 4. The VFD shall include an input full-wave bridge rectifier and maintain a fundamental power factor near unity regardless of speed or load.
- 5. The VFD and options shall be tested to ANSI/UL Standard 508. The complete VFD, including all specified options, shall be assembled by the manufacturer, which shall be UL 508 certified for the building and assembly of option panels. Assembly of separate panels with options by a third-party is not acceptable. The appropriate UL stickers shall be applied to both the VFD and option panel, in the case where these are not contained in one panel.
- 6. The VFD shall have DC link reactors on both the positive and negative rails of the DC bus to minimize power line harmonics. VFDs without DC link reactors shall provide a minimum 3% impedance line reactor.
- The VFDs full load amp rating shall meet or exceed NEC Table 430-150. The VFD shall be able to provide full rated output current continuously, 110% of rated current for 60 seconds and 160% of rated current for up to 0.5 second while starting.
- 8. The VFD shall be able to provide full torque at any selected frequency from 28 Hz to base speed to allow driving direct drive fans without derating.
- 9. An automatic energy optimization selection feature shall be provided standard in the VFD. This feature shall automatically and continually monitor the motor is speed and load and adjust the applied voltage to maximize energy savings and provide up to an additional 3% to 10% energy savings.

- 10. Input and output power circuit switching shall be able to be accomplished without interlocks or damage to the VFD. Switching rate may be up to 1 time per minute on the input and unlimited on the output.
- 11. An automatic motor adaptation test algorithm shall measure motor stator resistance and reactance to optimize performance and efficiency. It shall not be necessary to run the motor or de-couple the motor from the load to run the test.
- 12. Galvanic and/or optical isolation shall be provided between the VFDs power circuitry and control circuitry to ensure operator safety and to protect connected electronic control equipment from damage caused by voltage spikes, current surges, and ground loop currents. VFDs not including either galvanic or optical isolation on both analog I/O and discrete I/O shall include additional isolation modules.
- 13. The VFD shall minimize the audible motor noise through the use of an adjustable carrier frequency. The carrier frequency shall be automatically adjusted to optimize motor and VFD efficiencies while reducing motor noise.
- 14. Protective Features
 - a. Protection shall be provided against input transients, loss of AC line phase, output short circuit, output ground fault, overvoltage, undervoltage, VFD overtemperature and motor overtemperature. The VFD shall display all faults as words. Codes are not acceptable.
 - b. The VFD shall be protected from sustained power or phase loss. The VFD shall provide full rated output with an input voltage as low as 90% of the nominal. The VFD shall continue to operate with reduced output with an input voltage as low as 164 V AC for 208/230 volt units, 313 V AC for 460 volt units, and 394 volts for 600 volts units.
 - c. The VFD shall incorporate a motor preheat circuit to keep the motor warm and prevent condensation build up in the stator.
 - d. The VFD package shall include semi-conductor rated input fuses to protect power components.
 - e. To prevent breakdown of the motor winding insulation, the VFD shall be designed to comply with IEC Part 34-17. Otherwise the AHU manufacturer shall ensure that inverter rated motors are supplied.
 - f. The VFD shall include a "signal loss detection" circuit to sense the loss of an analog input signal such as 4 to 20 mA or 2 to 10 V DC, and shall be programmable to react as desired in such an instance.
 - g. The VFD shall function normally when the keypad is removed while the VFD is running and continue to follow remote commands. No warnings or alarms shall be issued as a result of removing the keypad.
 - h. The VFD shall catch a rotating motor operating forward or reverse up to full speed.
 - i. The VFD shall be rated for 100,000 amp interrupting capacity (AIC).
 - j. The VFD shall include current sensors on all three output phases to detect and report phase loss to the motor. The VFD shall identify which of the output phases is low or lost.
 - k. The VFD shall continue to operate without faulting until input voltage reaches 300 V AC on 208/230 volt units, 539 V AC on 460 volt units, and 690 volts on 600 volt units.

15. Interface Features

- a. Hand/Start, Off/Stop and Auto/Start selector switches shall be provided to start and stop the VFD and determine the speed reference. On units with bypass, a VFD/Off/Bypass selector switch shall be provided.
- b. The VFD shall be able to be programmed to provide a 24 V DC output signal to indicate that the VFD is in Auto/Remote mode.
- c. The VFD shall provide digital manual speed control. Potentiometers are not acceptable.
- d. A lockable, alphanumeric backlit display keypad shall be provided. The keypad shall be remotely mountable up to 10 feet away using standard 9-pin cable.
- e. The keypads for all sizes of VFDs shall be identical and interchangeable.
- f. To set up multiple VFDs, it shall be possible to upload all setup parameters to the VFDs keypad, place that keypad on all other VFDs in turn and download the setup parameters to each VFD. To facilitate setting up VFDs of various sizes, it shall be possible to download from the keypad only size independent parameters.
- g. The display shall be programmable to display in English, Spanish and French at a minimum.
- h. A red FAULT light, a yellow WARNING light and a green POWER-ON light shall be provided. These indications shall be visible both on the keypad and on the VFD when the keypad is removed.
- i. A quick setup menu with factory preset typical HVAC parameters shall be provided on the VFD eliminating the need for macros.
- j. The VFD shall include a standard EIA-485 communications port and capabilities to be connected at a future date to a Johnson Controls N2 Metasys or Siemens FLN system at no additional cost to the owner. The connection shall be software selectable by the user.
- k. At a minimum, the following points shall be controlled and/or accessible:
 - (1) VFD Start/Stop
 - (2) Speed reference
 - (3) Fault diagnostics
 - (4) Meter points
 - (a) Motor power in HP
 - (b) Motor power in kW
 - (c) Motor kW-hr
 - (d) Motor current
 - (e) Motor voltage
 - (f) Hours run
 - (g) 2 feedback signals
 - (h) DC link voltage
 - (i) Thermal load on motor
 - (j) Thermal load on VFD
 - (k) Heatsink temperature
- I. Four additional Form C 230 volt programmable relays shall be available for field installation within the VFD

- m. Two set-point control interfaces (PID control) shall be standard in the unit. The VFD shall be able to look at two feedback signals, compare with two set-points and make various process control decisions.
- n. Floating point control interface shall be provided to increase/decrease speed in response to contact closures.
- Four simultaneous displays shall be available. They shall include frequency or speed, run time, output amps and output power. VFDs unable to show these four displays simultaneously shall provide panel meters.
- p. Sleep mode shall be provided to automatically stop the VFD when its speed drops below set sleep level for a specified time. The VFD shall automatically restart when the speed command exceeds the set wake level.
- q. The sleep mode shall be functional in both follower mode and PID mode.
- r. A run permissive circuit shall be provided to accept a ¿system ready¿ signal to ensure that the VFD does not start until dampers or other auxiliary equipment are in the proper state for VFD operation. The run permissive circuit shall also be capable of sending an output signal as a start command to actuate external equipment before allowing the VFD to start.
- s. The following displays shall be accessible from the control panel in actual units: Reference Signal Value, Output Frequency in Hz or percent, Output Amps, Motor HP, Motor kW, kWhr, Output Voltage, DC Bus Voltage, VFD Temperature in degrees, and unit CFM.
- t. The display shall be programmed to read in inches of water column (in-wg).
- u. The VFD shall be able to be programmed to sense the loss of load and signal a no load/broken belt warning or fault.
- v. If the temperature of the VFDs heat sink rises to 80°C, the VFD shall automatically reduce its carrier frequency to reduce the heat sink temperature. If the temperature of the heat sink continues to rise the VFD shall automatically reduce its output frequency to the motor. As the VFDs heat sink temperature returns to normal, the VFD shall automatically increase the output frequency to the motor and return the carrier frequency to its normal switching speed.
- w. The VFD shall have temperature controlled cooling fans for quiet operation and minimized losses.
- x. The VFD shall store in memory the last 10 faults and related operational data.
- y. Eight programmable digital inputs shall be provided for interfacing with the systems control and safety interlock circuitry.
- z. Two programmable relay outputs, one Form C 240 V AC, one Form A 30 V AC, shall be provided for remote indication of VFD status.
- aa. Three programmable analog inputs shall be provided and shall accept a direct-or-reverse acting signal. Analog reference inputs accepted shall include two voltage (0 to 10 V DC, 2 to 10 V DC) and one current (0 to 20 mA, 4 to 20 mA) input.
- bb. Two programmable 0 to 20 mA analog outputs shall be provided for indication of VFD status. These outputs shall be programmable for

- output speed, frequency, current and power. They shall also be programmable to provide a selected 24V DC status indication.
- cc. Under fire mode conditions, the VFD shall be able to be programmed to automatically default to a preset speed.

16. Adjustments

- a. The VFD shall have an adjustable carrier frequency in steps of not less than 0.1 kHz to allow tuning the VFD to the motor.
- b. A minimum of sixteen preset speeds shall be provided.
- c. Four acceleration and four deceleration ramps shall be provided. Accel and decel time shall be adjustable over the range from 0 to 3,600 seconds to base speed. The shape of these curves shall be automatically contoured to ensure no-trip acceleration and deceleration.
- d. Four current limit settings shall be provided.
- e. If the VFD trips on one of the following conditions, the VFD shall be programmable for automatic or manual reset: undervoltage, overvoltage, current limit and inverter overload.
- f. The number of restart attempts shall be selectable from 0 through 20 or infinitely and the time between attempts shall be adjustable from 0 through 600 seconds.
- g. An automatic ¿on delay¿ shall be selectable from 0 to 120 seconds.

17. Service Conditions

- a. VFDs shall provide full output in an ambient temperature from -10 to 50° C (14 to 104° F).
- b. VFDs shall provide full output in a relative humidity from 0 to 95%, non-condensing.
- c. VFDs shall provide full output up to 3,300 feet elevation without derating.
- d. VFDs shall provide full output with an AC line voltage variation from -10 to +10% of nominal voltage.
- e. No side clearance shall be required for cooling of any units. All power and control wiring shall be done from the bottom.

18. Warranty

- a. The VFD shall be warranted by the manufacturer for a period of 42 months from date of shipment, or 36 months from start-up, which ever occurs first. The warranty shall include parts, labor, travel costs and living expenses incurred by the manufacturer to provide factory-authorized on-site service.
- N. Factory Wiring of Lights, VFDs, and Combination Starters/Disconnects
 - VFDs shall be wired per NEC, UL, and NFPA 90A requirements. Units with factory-mounted controls shall also include power wiring from the VFD or starter/disconnect control transformer to the control system transformers. Units

- with VFDs and factory-mounted controls shall have a binary start-stop signal and an analog speed signal wired from the direct digital controller to the VFD.
- 2. All power wiring for voltages greater than 24V and traveling through multiple unit sections shall be contained in an enclosed, metal, power-wiring raceway or EMT. Sections less than 6-inch in length may be contained in FMC.
- 3. The Temperature Control Contractor and RTU Manufacturer Service Technician shall unit for proper operation and fan rotation.
- 4. For fan motors not supplied with a factory mounted and wired starter or VFD, the unit manufacturer shall supply a 4 X 4 NEMA 4 junction box on the exterior of the fan section(s) with wiring, prewired to the fan motor, to allow for ease of field installation of a starter or VFD.
- 5. On units provided with factory mounted and wired supply fan starter or VFD and DDC controls, the manufacturer shall provide a single point of power. Line-to-24v transformers shall be provided with sufficient vA to power the unit mounted controller and factory installed control points.

O. Acceptable Manufacturers

- 1. Trane
- 2. York Solution YC
- 3. Carrier 39CC
- 4. Daikin Applied Skyline Series

P. Warranty

1. Provide comprehensive 3-year warranty including parts and labor.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install all equipment per manufacturer's printed recommendations.

3.2 EXAMINATION

- A. Verify that roof is ready to receive work.
- B. Verify that proper power supply is available.

3.3 INSTALLATION

- A. Install in accordance with manufacturer's instructions.
- B. Mount units on factory built roof mounting frame providing watertight enclosure to protect ductwork. Install roof mounting curb level.

3.4 MANUFACTURER'S FIELD SERVICES

A. Package rooftop unitary manufacturers shall maintain service capabilities no more than 100 miles from the jobsite.

	B.	The manufacturer shall furnish complete submittal wiring diagrams of the package unit as applicable for field maintenance and service.
END 23 85	00	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, apply to this Section.

1.2 SUMMARY

A. Section includes:

- 1. Electrical equipment coordination and installation.
- 2. Common electrical installation requirements.

PART 2 - PRODUCTS - DOES NOT APPLY

PART 3 - EXECUTION

3.1 INSPECTION OF BID DOCUMENTS AND PREMISES

- A. Visit the premises, take measurements and verify all elevations shown on the drawings, inspect existing conditions and limitations, obtain first hand information necessary to submit a complete bid.
- B. Thoroughly examine the complete set of contract documents including work required by other trades. Bidders are cautioned to acquaint themselves with requirements necessitating installation work of material or equipment furnished by other contractors or the Owner.
- C. In the event of any conflict, discrepancy or inconsistency among the Contract Documents, interpretation shall be based on the following descending order or priority:
 - 1. Specifications.
 - 2. Drawings, and among the drawings, the following:
 - a. as between figures given on drawings and scaled measurements, the figures shall govern;
 - b. as between large scale drawings and small scale drawings, the large scale drawings shall govern.

3. In the event that Work is called for by the drawings but not by the specifications, or by the specifications but not by the drawings, the Contractor shall be responsible for such Work.

3.2 COORDINATION

- A. Coordinate arrangement, mounting, and support of electrical equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

3.3 INTERRUPTION OF ELECTRICAL SYSTEMS AND SERVICES

- A. Do not interrupt electric systems or service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Architect or Owner no fewer than seven days in advance of proposed interruption of electrical service. Indicate:
 - a. The extent of the work to be done during the outage.
 - b. Probable length of time required for the outage.
 - c. Designed time at which the outage is to begin.
 - 2. Do not proceed with interruption of electrical service without Architect's or Owner's written permission.
 - 3. Schedule work to minimize the number and length of time of the outage(s) or interruption(s) of the various systems and services.

3.4 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Space Preference:

- 1. Carefully verify and coordinate the location and level of all lines. Run preliminary levels and check with all other contractors so that conflict in location may be avoided.
- 2. If conflicts occur, the following preference schedule shall be followed:
 - a. Recessed electric fixtures.
 - b. High pressure ductwork.
 - c. Sanitary drainage.
 - d. Steam condensate, hot and chilled water.
 - e. Low pressure ductwork.
 - f. Domestic water storm and vent lines.
 - g. Electric conduits.
- 3. No other work shall have preference over plumbing lines below fixtures.
- 4. No other work shall have preference over conduit above or below electric switchgear and above or below panels.
- 5. No piping conveying fluids shall be provided directly over electrical or elevator equipment.
- F. Lines and Levels: Determine all grades, maintain necessary lines and levels throughout the progress of the work and assume full responsibility for their correctness. Where levels are indicated on the drawings, work shall be installed at those levels unless prior written approval to change is obtained from the Architect / Engineer.
- G. Location of Equipment: The approximate location of all equipment is shown on the drawings. The Architect / Engineer reserves the right to change the location of all equipment 5' in any direction without these changes being made the subject of an extra charge provided such changes are made before final installation.

3.5 ELECTRICAL DEMOLITION

- A. Disconnect and remove electrical systems, equipment and components indicated to be removed.
 - 1. Wiring Devices to be Removed: Remove wiring devices indicated to be removed along with associated cover plates.
 - 2. Electrical Equipment to be Removed: Remove electrical equipment indicated to be removed along with associated supports, fittings, raceways and conductors.
 - 3. Motors and Mechanical Equipment to be Removed: Electrically disconnect each motor and piece of mechanical equipment indicated to be removed and remove associated raceways, conduits, devices and electrical equipment.

- 4. Feeders and Branch Circuits to be Removed: Remove feeders and branch circuits indicated to be removed along with associated supports, fittings, raceway and conductors.
- B. All removed electrical equipment, devices, raceways, conductors and associated items, except as noted below, shall become property of the Contractor and shall be properly disposed of by the Contractor.
- C. Removal of existing electrical devices shall be such that all existing remaining electrical devices are kept in continuous service.
- D. Existing circuit conductors connected to outlets, boxes or fixtures being removed shall be disconnected and removed back to next active remaining device.
- E. Existing circuit conductors connected to other fixtures, devices or other electrical equipment that are not to be removed or disconnected and are passing through outlet boxes, fixtures and conduit that are being removed; shall be rerouted from remaining existing device to next remaining device as necessary to keep remaining devices in service and existing circuit conductors continuous.
- F. Where connections of existing devices cannot be made continuous with existing conduit, boxes and conductors; new raceways and conductors shall be installed from existing remaining device to next remaining device.
- G. For each item disconnected and removed, disconnect and remove defunct circuit wiring back to next active remaining device or to panel or switchboard from which the circuit originates.
- H. For each item disconnected and removed, disconnect and remove abandoned, exposed conduits, and / or conduits made exposed by demolition, back to next active remaining device or to panel or switchboard from which the circuit originates.
- I. All conditions shall be carefully field determined and verified.
- J. Provide all abandoned ceiling outlets, switch boxes and outlet boxes with blank coverplates.

3.6 CUTTING AND PATCHING

- A. Examine architectural and structural drawings to determine the general nature of the types of construction to be encountered during performance of electrical work.
- B. All cutting and patching of masonry, carpentry, steel, iron work, concrete structural work, and finished surfaces belonging to the building shall be done in order that work may be properly installed. Replace or repair all disturbed constructions or finishes to its original condition and under no condition cut structural work except upon approval of the Architect / Engineer.
- C. Cut through ceilings, floors, walls and partitions in a careful manner and fill the openings around the pipes and sleeves.

- D. Carefully coordinate locations of openings and sleeves to avoid conflict with other trades. Furnish complete information concerning locations and sizes of openings to other trades in sufficient time for inclusion on their shop drawings.
- E. Employ craftsmen and mechanics who are skilled and experienced in their respective trades to perform all cutting, fitting, matching, patch repairing, and finishing work required for installation of electrical work.
- F. Perform cutting to neat line, in a manner that will not weaken the wall, partition, or floor being cut. Cut holes in floors to neat line. Perform drilling in a manner that will not cause breaking of floor around the drilled hole.
- G. General Contractor shall patch, repair and unify all work and material that is cut.

3.7 OPENINGS IN EXISTING CONSTRUCTION

- A. In existing construction, perform all cutting and patching where required in connection with the work. Match patching to existing adjacent surfaces.
- B. All cutting in existing structural elements of building shall be accomplished with hole saws. Air hammers and cutting torches are not permitted.
- C. Reinforced concrete slabs, steel joists, concrete floors and footings, or other structural work shall not be cut or disturbed in any way, unless as approved by the Architect / Engineer. The Electrical Contractor shall be held responsible for and correct all damage that he may cause.
- D. Openings between conduit and floors or walls through fire or smoke barriers shall be closed with fire stop material to maintain fire or smoke barrier rating.
- E. Fire stop material shall be Dow Corning 3-6548 Silicone RTV Foam, Chase Technology Corp. CTC PR-855 fire-resistant foam sealant, 3M CP-25 Series Caulk Fire Barrier, T & B S-101 Fire Barrier or Nelson Flameseal.

3.8 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly.

3.9 FIREPROOFING REPAIR

A. Install all hangers, inserts, supports, anchorages, etc., prior to installation of fireproofing materials. Do not remove or damage fireproofing on roof deck, roof beams, roof framing, floor beams of other floor framing members, columns, or wind bracing during installation of any electrical work. If fireproofing is damaged or is removed, repair or replace to satisfaction of Architect / Engineer and at no additional expense to Owner.

3.10 FIELD CORRECTIONS AND CHANGES

- A. Carefully and accurately record on field set of drawings, any deviations or changes in locations of conduit, wiring and/or equipment made in the field and shall keep the Architect / Engineer informed on all deviations and changes.
- B. At the completion of the job, furnish the Architect / Engineer three (3) complete sets (not the field set) of drawings indicating these deviations or changes. Extra sets of drawings will be provided to the contractor for this purpose. Any changes in the exterior work shall be recorded by dimension.

3.11 OPERATION AND MAINTENANCE INSTRUCTIONS

- A. Before final acceptance of the electrical installation, provide to the Architect / Engineer three (3) bound copies of a complete set of operating and maintenance instructions and procedures for all electrical systems and equipment furnished under this contract.
- B. Prepare a complete file of maintenance and operating instructions which covers all electrical systems and equipment listed in the section entitled "Submittals".
- C. Data shall be placed in an 8-1/2" x 11" slide hinge, heavy duty, three-post type, stiff cover binder. Each completed binder shall not exceed 3-1/2" in thickness. Label binder as follows:

ELECTRICAL SYSTEMS MAINTANENANCE AND OPERATING INSTRUCTIONS BROOKENS ADMINISTRATIVE CENTER HAIL DAMAGED HVAC REPLACEMENT URBANA, ILLINOIS

- D. Data shall include a complete table of contents, tabs, final approved shop drawings, wiring diagrams, manufacturer's operating and maintenance instructions, catalog brochure information, replacement parts lists, name, address and telephone number of nearest stocking supply house.
- E. Drawings shall be neatly folded to approximately 8-1/2" x 11" size and inserted individually into 8-1/2" x 11" sheet protectors which shall be properly punched and inserted into the binder.
- F. All material relative to the equipment for one system (i.e.; lighting fixtures, panelboards, motor starting equipment, etc.) shall be filed behind a clearly labeled filing tab. The following information shall be typed on the filing tab page: Item, Manufacturer, Contractor's Order Number, Supplier's Order Number, Manufacturer's Order Number.
- G. Three completed files shall be submitted for review prior to job completion. Final payments will not be certified until the maintenance manuals have been received and reviewed.

- H. Authorized manufacturer's personnel shall instruct (to the Owner's satisfaction) all personnel designated by the Owner in the use of equipment and systems as listed in the section entitled "Submittals".
- I. Provide a minimum of two man days in two trips to the job before the job is accepted for the instruction and training of the Owner's representative in the operation and maintenance of the complete electrical system.
- J. The above does not relieve the contractor of his responsibility of making service calls due to any defect which may develop with systems or equipment during the guarantee period nor shall these service calls be included as part of instruction time. Specific requirements in specifications for factor service representatives is also in addition to above requirements.

3.12 CLEANING UP

- A. Before work can be considered complete, clean all surfaces of all paint, plaster, mortar, labels and other stains and remove all lumps of cement. Take care not to scratch, mar, or damaged surfaces in cleaning.
- B. In case of dispute, the Owner / User may remove the rubbish and charge the cost to the one or more contractors as the Architect / Engineer may determine to be just.

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Connectors, splices, and terminations rated 600 V and less.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. General Cable; General Cable Corporation.
 - 2. <u>Senator Wire & Cable Company</u>.
 - 3. <u>Southwire Company</u>.
 - 4. Nexans.
- B. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
- C. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN/THWN-2.

2.2 CONNECTORS AND SPLICES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. 3M.
 - 2. <u>Hubbell Power Systems, Inc.</u>
 - 3. ILSCO.
 - 4. Tyco Electronics Corp.

- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.
 - 1. Expandable steel spring and polypropylene body type connectors and wire nuts for wire sizes up to an including No. 10 AWG.
 - 2. Bolt type connectors or mechanical compression crimp type for wire sizes No. 8 AWG and larger. Cover connectors with three layers of 600 volt tape or heat shrinkable insulation equivalent to 150% conductor insulation.

2.3 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.
- 3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
 - A. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.
 - B. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
 - C. Exposed Branch Circuits, Including in Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
 - D. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.
 - E. Minimum wire size shall be No. 12 except for internal fixture wire which shall be minimum size of No. 14 type SF, SFF, PF, PFF or TFN, 600 volt.
 - F. All branch circuit wiring and feeder cables for circuits over 20 amps shall be sized as noted on the drawings. If size is not specifically noted, size all branch circuit wiring and feeder cables in accordance with the National Electrical Code.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
- B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
- C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Splices and taps in conductors shall be as few in number as practicable.
- D. Splices and taps shall be so made that they have an electrical resistance not in excess of that of 2' of the conductor.
 - 1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.
- E. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.
- F. Neutral conductors in outlet boxes at receptacles shall be jointed and pigtailed to the outlet. The removal of a receptacle from the circuit shall not affect the continuity of the neutral conductor.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.7 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, apply to this Section.

1.2 SUMMARY

- A. Section includes grounding and bonding systems and equipment.
- B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 - 1. Underground distribution grounding.
 - 2. Foundation steel electrodes.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Burndy; Part of Hubbell Electrical Systems.
 - 2. Dossert; AFL Telecommunications LLC.
 - 3. <u>ERICO International Corporation</u>.
 - 4. Fushi Copperweld Inc.
 - 5. Galvan Industries, Inc.; Electrical Products Division, LLC.
 - 6. <u>Harger Lightning & Grounding.</u>
 - 7. ILSCO.
 - 8. O-Z/Gedney; a brand of Emerson Industrial Automation.
 - 9. Robbins Lightning, Inc.
 - 10. Siemens Power Transmission & Distribution, Inc.

2.2 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.3 CONDUCTORS

A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

2.4 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

3.2 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits. Separate grounding conductors are not shown on the drawings but shall be included in all raceways as set forth on the drawings.
- B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70. Separate grounding conductors are not shown on the drawings but shall be included in all raceways as set forth on the drawings.
 - 1. Feeders and branch circuits.
 - 2. Receptacle circuits.
 - 3. Single-phase motor and appliance branch circuits.
 - 4. Three-phase motor and appliance branch circuits.
- C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

3.3 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

RELATED DOCUMENTS 1.1

Drawings and general provisions of the Contract, including General and Supplementary A. Conditions, apply to this Section.

1.2 **SUMMARY**

- A. Section Includes:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.

1.3 **ACTION SUBMITTALS**

- A. Product Data: For each type of product.
 - Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 - Hangers. a.
 - b. Steel slotted support systems.
 - 2. Include rated capacities and furnished specialties and accessories.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field A. assembly.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cooper B-Line, Inc.; a division of Cooper Industries.
 - b. Flex-Strut Inc.
 - Unistrut; an Atkore International company.
 - 2. Material: Galvanized steel.

- 3. Channel Width: 1-5/8 inches.
- 4. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-
- 5. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- 6. Channel Dimensions: Selected for applicable load criteria.
- B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.
- B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
- D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

- C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners. Anchors using explosive charges to drive inserts into concrete shall not be used.
 - 5. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69 or metal framing channel welded to structure.
 - 6. To Light Steel: Sheet metal screws.
 - 7. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.
- D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.
- E. Repair fireproofing damaged as a result of installing clamps or supports to structural steel.

3.3 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.
- C. Prime paint all structural steel installed for pipe or equipment supports or burned by welding with one coat of rust inhibitive black paint at the time of installation.

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits, tubing, and fittings.
 - 2. Surface raceways.
 - 3. Boxes, enclosures, and cabinets.

1.3 DEFINITIONS

A. GRC: Galvanized rigid steel conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Allied Tube & Conduit; a part of Atkore International.
 - 2. Republic Conduit.
 - 3. Western Tube and Conduit Corporation.
- B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. GRC: Comply with ANSI C80.1 and UL 6.

- D. EMT: Comply with ANSI C80.3 and UL 797.
- E. FMC: Comply with UL 1; zinc-coated steel.
- F. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- G. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 - 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 - 2. Fittings for EMT:
 - a. Material: Steel.
 - b. Type: Compression.
 - 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.

2.2 BOXES, ENCLOSURES, AND CABINETS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Technologies Company.
 - 2. Hubbell Incorporated.
 - 3. MonoSystems, Inc.
 - 4. RACO; Hubbell.
- B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- D. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- E. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- F. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.
- G. Gangable boxes are prohibited.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:

- 1. Exposed Conduit: GRC.
- 2. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
- 3. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 3. Exposed and Subject to Severe Physical Damage: EMT. Raceway locations include the following:
 - a. Loading dock.
 - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 - c. Mechanical rooms.
 - d. Gymnasiums.
 - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 6. Damp or Wet Locations: GRC.
 - 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.
 - a. All boxes installed in poured concrete, block, brick or tile shall be masonry type.
 - b. All multiple gang switch boxes shall be solid gang box.
 - c. All surface-mounted boxes shall be cast FS or FD type.
 - d. The minimum size of boxes shall be 4" x 4" x 2-1/8" minimum depth. For single device installation, install square cut single device cover.
 - e. Install all device boxes with square cut device covers for number of devices required.
 - f. For multiple gang boxes installed for more than one 277 volt switch, a barrier shall be installed between each box gang.
- C. Minimum Raceway Size: 3/4-inch trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. EMT: Use compression, steel fittings. Comply with NEMA FB 2.10.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

- B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- C. Complete raceway installation before starting conductor installation.
- D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- E. Conduits and raceways shall not be supported from plumbing lines, ductwork or supports for equipment provided by other trades.
- F. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- G. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
- H. Support conduit within 12 inches of enclosures to which attached.
- I. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- J. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- K. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- L. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
- M. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
- N. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
- O. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies.

3.5 PROTECTION

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.
- B. Protect work from injury by keeping all conduit and boxes capped and plugged or otherwise protected. This includes damage by freezing and / or stoppage from building materials, sand, dirt or concrete.

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
- 2. Sleeve-seal systems.
- 3. Grout.
- 4. Silicone sealants.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:

- 1. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
- B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

2.2 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.3 SILICONE SEALANTS

- A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 - 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
- B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Comply with NEMA VE 2 for cable tray and cable penetrations.
- C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal annular space between sleeve and raceway or cable, using silicone sealant appropriate for size, depth, and location of joint.
 - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.
 - 4. Install sleeves for all wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

- D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- E. Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve-seal system.

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Identification for raceways.
 - 2. Equipment identification labels, including arc-flash warning labels.
 - 3. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with ASME A13.1.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.

2.2 SIGNS

- A. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Engraved legend.
 - 2. Thickness:
 - a. For signs up to 20 sq. inches, minimum 1/16-inch-.

- b. For signs larger than 20 sq. inches, 1/8 inch thick.
- c. Engraved legend with black letters on white face.
- d. Punched or drilled for mechanical fasteners.
- e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.
- 3. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Brady Corporation.
 - b. Carlton Industries, LP.
 - c. emedco.

2.3 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

3.2 IDENTIFICATION SCHEDULE

- A. Power-Circuit Conductor Identification, 600 V or Less:
 - 1. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service feeder and branch-circuit conductors.

- a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
- b. Colors for 208/120-V Circuits:
 - 1) Phase A: Black.
 - 2) Phase B: Red.
 - 3) Phase C: Blue.
 - 4) Neutral: White.
 - 5) Ground: Green.
- c. Colors for 480/277-V Circuits:
 - 1) Phase A: Brown.
 - 2) Phase B: Orange.
 - 3) Phase C: Yellow.
 - 4) Neutral: White.
 - 5) Ground: Green with yellow stripe.
- d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- B. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Indoor Equipment: Engraved, laminated acrylic or melamine plastic label, punched or drilled for mechanical fasteners. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - d. Fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
 - e. Attach labels with screws and not adhesives.
 - 2. Equipment To Be Labeled:
 - a. Access doors and panels for concealed electrical items.
 - b. Switchgear.
 - c. Motor-control centers.

- d. Enclosed switches.
- e. Enclosed circuit breakers.
- f. Enclosed controllers.
- g. Variable-speed controllers.
- h. Push-button stations.

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - GFCI receptacles.

1.3 DEFINITIONS

- A. Abbreviations of Manufacturers' Names:
 - 1. Cooper: Cooper Wiring Devices; Division of Cooper Industries, Inc.
 - 2. Hubbell: Hubbell Incorporated: Wiring Devices-Kellems.
 - 3. Leviton: Leviton Mfg. Company, Inc.
 - 4. Pass & Seymour: Pass & Seymour/Legrand.
- B. BAS: Building automation system.
- C. EMI: Electromagnetic interference.
- D. GFCI: Ground-fault circuit interrupter.
- E. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- F. RFI: Radio-frequency interference.
- G. SPD: Surge protective device.
- H. UTP: Unshielded twisted pair.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.
- C. Devices for Owner-Furnished Equipment:
 - 1. Receptacles: Match plug configurations.
 - 2. Cord and Plug Sets: Match equipment requirements.
- D. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GFCI RECEPTACLES

- A. General Description:
 - 1. 125 V, 20 A, straight blade, feed-through type.
 - 2. Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 943 Class A, and FS W-C-596.
 - 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.
- B. Duplex GFCI Convenience Receptacles:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Eaton (Arrow Hart)</u>.
 - b. <u>Hubbell Incorporated; Wiring Device-Kellems</u>.
 - c. Leviton Manufacturing Co., Inc.
 - d. Pass & Seymour/Legrand (Pass & Seymour).

2.3 FINISHES

A. Device Color:

- 1. Wiring Devices Connected to Normal Power System: White unless otherwise indicated or required by NFPA 70 or device listing.
- B. The Architect / Engineer reserves the right to change the color at time of shop drawing review.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Mounting Heights

- 1. Examine architectural details and elevations for heights indicated there. Coordinate mounting heights with wall treatment and finish.
- 2. Examine electrical drawings for heights indicated there.
- 3. Unless otherwise indicated:
 - a. Wall Switches: 48" above finished floor, except where special wall treatment requires a higher or lower setting.
 - b. Dimmer and Lighting Controls: 48" AFF, except where special wall treatment requires higher or lower setting.
 - c. Receptacles General: 18" AFF.
 - d. Receptacles in Mechanical and Electrical Equipment Rooms: 40" AFF.
 - e. Receptacles Exterior: 24" above finished grade.
- 4. Mounting heights given above shall be to the center line of the device.
- 5. In block walls, locate device in either bottom or top of the block course nearest to the height indicated.
- 6. In brick walls, mount receptacles in the horizontal position in the brick course nearest to the height indicated.
- 7. Where receptacles are indicated to be installed above counters, mount in the horizontal position 4" from top of back splash to bottom of box.

C. Coordination with Other Trades:

- 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
- 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
- 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
- 4. Install wiring devices after all wall preparation, including painting, is complete.

D. Conductors:

- 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
- 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
- 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
- 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.

E. Device Installation:

- 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
- 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
- 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
- 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
- 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
- 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
- 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
- 8. Tighten unused terminal screws on the device.
- 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

F. Receptacle Orientation:

- 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the left.
- G. Device Plates: Device plates shall fit tight against the finished walls and shall completely cover the openings in the walls for the boxes. Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening. Device plates shall be attached and adjusted so they finish straight and level.
- H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 GROUND FAULT INTERRUTING RECEPTACLES

- A. Where drawing or specifications call for 15 amp or 20 amp, 120 volt receptacles in the following locations, provide ground fault interrupting type receptacles.
 - 1. Outdoors.

3.4 IDENTIFICATION

- A. Comply with Section 260553 "Identification for Electrical Systems."
 - 1. Receptacles and Switches: Provide all outlet and switch coverplates with identification labels showing panelboard designation and circuit breaker number connected to device.
 - a. Normal Circuits: Black letters indicating panel and circuit number on clear background applied to front of coverplate. Minimum letter height 3/16".
 - b. Emergency Circuits: Red letter indicating panel and circuit number on clear background applied to front of coverplate. Minimum letter height 3/16".
 - 2. Labels shall be attached to coverplates with pressure-sensitive adhesive. Devices installed in multi-outlet, surface raceways shall be provided with labels.

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Cartridge fuses rated 600 V ac and less for use in the following:
 - a. Control circuits.
 - b. Motor-control centers.
 - c. Panelboards.
 - d. Switchboards.
 - e. Enclosed controllers.
 - f. Enclosed switches.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:
 - 1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 - a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 - b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.
 - 2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 - 3. Current-limitation curves for fuses with current-limiting characteristics.
 - 4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse. Submit in PDF format.
 - 5. Coordination charts and tables and related data.
 - 6. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals.
 - 1. Ambient temperature adjustment information.
 - 2. Current-limitation curves for fuses with current-limiting characteristics.
 - 3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project. Submit in PDF format.
 - 4. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.6 FIELD CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Bussmann, an Eaton business.
 - 2. Edison; a brand of Bussmann by Eaton.
 - 3. Littelfuse, Inc.
 - 4. Mersen USA.
- B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

- 1. Type RK-1: 250 or 600-V, zero- to 600-A rating, 200 kAIC, time delay.
- 2. Type L: 600-V, 601- to 6000-A rating, 200 kAIC, time delay.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMA FU 1 for cartridge fuses.
- D. Comply with NFPA 70.
- E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
- B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
- C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Cartridge Fuses:

- 1. Feeders, 601 Amp through 6000 Amp: Class L, time delay.
- 2. Feeders, up to 600 Amp: Class RK1, time delay.
- 3. Motor Branch Circuits: Class RK1, time delay.
- 4. Other Branch Circuits: Class RK1, time delay.
- 5. Provide open-fuse indicator fuses or fuse covers with open fuse indication.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 26 2813

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Molded-case circuit breakers (MCCBs).
 - 4. Molded-case switches.
 - 5. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 - 4. Include evidence of a nationally recognized testing laboratory (NRTL) listing for series rating of installed devices.
 - 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.

- 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF electronic format.
- B. Shop Drawings: For enclosed switches and circuit breakers.
 - 1. Include plans, elevations, sections, details, and attachments to other work.
 - 2. Include wiring diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.
 - In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.6 FIELD CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 - 2. Altitude: Not exceeding 6600 feet.

1.7 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.
- B. Source Limitations:

- 1. Obtain fusible switches, non-fusible switches, molded case circuit breakers and switches from the same manufacturer as:
 - a. Enclosed controllers.
 - b. Switchboards.
 - c. Distribution panelboards.
 - d. Branch circuit panelboards.
 - e. Motor control centers.
 - f. Enclosed busway.
 - g. Low voltage transformers.
- C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- E. Comply with NFPA 70.

2.2 FUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton.
 - 2. General Electric Company.
 - 3. Siemens Industry, Inc.
 - 4. Square D; by Schneider Electric.
- B. Type HD, Heavy Duty:
 - 1. Single throw.
 - 2. Three pole.
 - 3. 240 or 600-V ac as specified on drawings.
 - 4. 1200 A and smaller.
 - 5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses.
 - 6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

- 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
- 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.

- 4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating 24-V ac.
- 5. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.3 NONFUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton.
 - 2. General Electric Company.
 - 3. Siemens Industry, Inc.
 - 4. Square D; by Schneider Electric.
- B. Type HD, Heavy Duty, Three Pole, Single Throw, 240 or 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

- 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
- 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 3. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating 24-V ac.
- 4. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.4 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
- B. Enclosure Finish: The enclosure shall be finished with gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type 1) gray baked enamel paint, electrodeposited on cleaned, phosphatized galvannealed steel (NEMA 250 Types 3R, 12).
- C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.
- D. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
 - 1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

- A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R.

3.3 INSTALLATION

- A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- C. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- D. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- E. Install fuses in fusible devices.
- F. Comply with NFPA 70 and NECA 1.

3.4 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.

2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections for Switches:
 - 1. Visual and Mechanical Inspection:
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, grounding, and clearances.
 - c. Verify that the unit is clean.
 - d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 - e. Verify that fuse sizes and types match the Specifications and Drawings.
 - f. Verify that each fuse has adequate mechanical support and contact integrity.
 - g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 - 1) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 - a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
 - h. Verify correct phase barrier installation.
 - i. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.
- C. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

3.6 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION 26 2816

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Manual motor controllers.
 - 2. Combination full-voltage magnetic motor controllers.
 - 3. Enclosures.
 - 4. Accessories.
 - 5. Identification.

1.3 DEFINITIONS

- A. CPT: Control power transformer.
- B. MCCB: Molded-case circuit breaker.
- C. MCP: Motor circuit protector.
- D. NC: Normally closed.
- E. OCPD: Overcurrent protective device.
- F. SCCR: Short-circuit current rating.
- G. SCPD: Short-circuit protective device.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For each type of magnetic controller.

- 1. Include plans, elevations, sections, and mounting details.
- 2. Indicate dimensions, weights, required clearances, and location and size of each field connection.
- 3. Wire Termination Diagrams and Schedules: Include diagrams for signal, and control wiring. Identify terminals and wiring designations and color-codes to facilitate installation, operation, and maintenance. Indicate recommended types, wire sizes, and circuiting arrangements for field-installed wiring, and show circuit protection features. Differentiate between manufacturer-installed and field-installed wiring.
- 4. Include features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- C. Product Schedule: List the following for each enclosed controller:
 - 1. Each installed magnetic controller type.
 - 2. NRTL listing.
 - 3. Factory-installed accessories.
 - 4. Nameplate legends.
 - 5. SCCR of integrated unit.
 - 6. For each combination magnetic controller include features, characteristics, ratings, and factory setting of the SCPD and OCPD.
 - a. Listing document proving Type 2 coordination.
 - 7. For each series-rated combination state the listed integrated short-circuit current (withstand) rating of SCPD and OCPDs by an NRTL acceptable to authorities having jurisdiction.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For magnetic controllers to include in operation and maintenance manuals.
 - 1. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 - a. Routine maintenance requirements for magnetic controllers and installed components.
 - b. Manufacturer's written instructions for testing and adjusting circuit breaker and MCP trip settings.
 - c. Manufacturer's written instructions for setting field-adjustable overload relays.
 - d. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.
 - e. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.6 QUALITY ASSURANCE

A. Source Limitations:

- 1. Obtain enclosed controllers from the same manufacturer as:
 - a. Fusible and non-fusible switches.
 - b. Molded case circuit breakers.
 - c. Switchboards.
 - d. Distribution panelboards.
 - e. Branch circuit panelboards.
 - f. Motor control centers.
 - g. Enclosed busway.
 - h. Low voltage transformers.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

1.8 FIELD CONDITIONS

- A. Ambient Environment Ratings: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than 23 deg F and not exceeding 104 deg F.
 - 2. Altitude: Not exceeding 6600 feet for electromagnetic and manual devices.
 - 3. The effect of solar radiation is not significant.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. UL Compliance: Fabricate and label magnetic motor controllers to comply with UL 508 and UL 60947-4-1.
- C. NEMA Compliance: Fabricate motor controllers to comply with ICS 2.

2.2 MANUAL MOTOR CONTROLLERS

- A. Motor-Starting Switches (MSS): "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off or on.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Eaton.
 - b. General Electric Company.
 - c. Siemens Industry, Inc.
 - d. Square D; by Schneider Electric.
 - 2. Standard: Comply with NEMA ICS 2, general purpose, Class A.
 - 3. Configuration: Nonreversing.
 - 4. Surface mounting.
 - 5. Red pilot light.
- B. Fractional Horsepower Manual Controllers (FHPMC): "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Eaton.
 - b. General Electric Company.
 - c. Siemens Industry, Inc.
 - d. Square D; by Schneider Electric.
 - 2. Configuration: Nonreversing.
 - 3. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters matched to nameplate full-load current of actual protected motor; external reset push button; melting alloy type.
 - 4. Pilot Light: Red.

2.3 ENCLOSURES

- A. Comply with NEMA 250, type designations as indicated on Drawings, complying with environmental conditions at installed location.
 - 1. Dry and Clean Indoor Locations: Type 1.
 - 2. Outdoor Locations: Type 3R.
- B. The construction of the enclosures shall comply with NEMA ICS 6.
- C. Controllers in hazardous (classified) locations shall comply with UL 1203 and shall be NEMA 250, Type 7C.

2.4 ACCESSORIES

- A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.
 - 1. Push Buttons, Pilot Lights, and Selector Switches: Standard-duty, except as needed to match enclosure type. Heavy-duty or oil-tight where indicated in the controller schedule.
 - a. Push Buttons: As indicated in the controller schedule.
 - b. Pilot Lights: As indicated in the controller schedule.

2.5 IDENTIFICATION

A. Controller Nameplates: Laminated acrylic plastic signs, as described in Section 26 0553 "Identification for Electrical Systems," for each compartment, mounted with corrosion-resistant screws.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and space conditions for compliance with requirements for motor controllers, their relationship with the motors, and other conditions affecting performance of the Work.

3.2 INSTALLATION

- A. Comply with NECA 1.
- B. Wall-Mounted Controllers: Install magnetic controllers on walls with tops at uniform height indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 26 0529 "Hangers and Supports for Electrical Systems" unless otherwise indicated.
- C. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and NFPA 70.
- D. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
- E. Setting of Overload Relays: Select and set overloads on the basis of full-load current rating as shown on motor nameplate. Adjust setting value for special motors as required by NFPA 70 for motors that are high-torque, high-efficiency, and so on.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

3.4 APPLICATIONS

- A. Provide separately mounted motor controllers as scheduled and shown on the drawings.
- B. Provide separate hand-off auto selector switch with maintained contacts in separate enclosure adjacent to manual starters where shown on the drawings or noted in the starter schedule.
- C. Provide combination magnetic starters for all multiple phase operated equipment, as indicated in the starter schedule. All starters shall be complete with pilot lights in cover, externally operated fused disconnect switch, fuses, and three (3) proper sized overload heaters as required. Furnish additional accessories, such as auxiliary contacts, on-off selector switches, hand-off auto selector switches and push button with the starter as indicated in the schedule. All push-button and hand-off auto selector switches shall have maintained contacts.
- D. Provide all magnetic and manual starters with properly sized overload elements.
- E. Furnish controllers with additional accessories, such as auxiliary contacts, on-off push buttons and hand-off auto selector switches with the starter as indicated in the schedule.
- F. All magnetic starters shall be provided with control coils for 120 volt control voltage. All 208 volt starters shall have a neutral in the circuit and control voltage shall be phase to neutral 120 volts. Control transformers shall be furnished for 480 volt starters. Provide in-line fuse in secondary circuit of control transformer.
- G. The schedule of starters as shown on the drawings shall indicate motor horse power, phase, voltage, starter size, starter type, auxiliary contacts, types of accessories; such as push buttons or hand-off-automatic switches.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Comply with the provisions of NFPA 70B, "Testing and Test Methods" Chapter.
 - 2. Visual and Mechanical Inspection:
 - a. Compare equipment nameplate data with drawings and specifications.
 - b. Inspect physical and mechanical condition.
 - c. Inspect anchorage, alignment, and grounding.
 - d. Verify the unit is clean.
 - e. Inspect contactors:

- 1) Verify mechanical operation.
- 2) Verify contact gap, wipe, alignment, and pressure are according to manufacturer's published data.
- f. Motor-Running Protection:
 - 1) Verify overload element rating is correct for its application.
 - 2) If motor-running protection is provided by fuses, verify correct fuse rating.
- g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 - Use a low-resistance ohmmeter. Compare bolted connection resistance values with values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 - Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data or NETA ATS Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
- h. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.
- 3. Infrared Inspection: Perform the survey during periods of maximum possible loading. Remove all necessary covers prior to the inspection.
 - a. Comply with the recommendations of NFPA 70B, "Testing and Test Methods" Chapter, "Infrared Inspection" Article.
 - b. After Substantial Completion, but not more than 60 days after Final Acceptance, perform infrared inspection of the electrical power connections of each motor controller.
 - c. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each motor controller 11 months after date of Substantial Completion.
 - d. Report of Infrared Inspection: Prepare a certified report that identifies the testing technician and equipment used, and lists the following results:
 - 1) Description of equipment to be tested.
 - 2) Discrepancies.
 - 3) Temperature difference between the area of concern and the reference area.
 - 4) Probable cause of temperature difference.
 - 5) Areas inspected. Identify inaccessible and unobservable areas and equipment.
 - 6) Load conditions at time of inspection.
 - 7) Photographs and thermograms of the deficient area.
 - 8) Recommended action.

- e. Equipment: Inspect distribution systems with imaging equipment capable of detecting a minimum temperature difference of 1?C at 30?C. The equipment shall detect emitted radiation and convert detected radiation to a visual signal.
- f. Act on inspection results and recommended action, and considering the recommendations of NETA ATS, Table 100.18. Correct possible and probable deficiencies as soon as Owner's operations permit. Retest until deficiencies are corrected.
- C. Motor controller will be considered defective if it does not pass tests and inspections.

END OF SECTION 26 2913.03

1.1 RELATED DOCUMENTS

A. Drawings and Bidding and Contract Provisions, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits and fittings.
 - 2. Surface raceways.
 - 3. Boxes, enclosures, and cabinets.
- B. Coordinate pathway installation with Temperature Control Subcontractor.

1.3 ACTION SUBMITTALS

A. Product Data: For surface pathways, wireways and fittings.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

- A. General Requirements for Metal Conduits and Fittings:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. EMT: Comply with ANSI C80.3 and UL 797.
- C. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.

2.2 METAL WIREWAYS

A. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.

- 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Fittings and Accessories: Include covers, couplings, offsets, elbows, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

2.3 SURFACE PATHWAYS

- A. General Requirements for Surface Pathways:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Surface Metal Pathways (Wiremold): Steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.

2.4 BOXES, ENCLOSURES, AND CABINETS

- A. General Requirements for Boxes, Enclosures, and Cabinets.
- B. Sheet-Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- C. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- D. Device Box Dimensions: as required for the application.
- E. Cabinets shall be provided by the Control Subcontractor.

PART 3 - EXECUTION

3.1 PATHWAY APPLICATION

- A. Indoors: Apply pathway products as specified below unless otherwise indicated:
 - 1. Exposed, in finished areas: Wiremold.
 - 2. Exposed, in unfinished areas (store rooms): EMT.
 - 3. Exposed and Subject to Severe Physical Damage: EMT. Pathway locations include the following:
 - a. Mechanical rooms.
 - 4. Concealed in Ceilings and Interior Walls and Partitions: Pathway not required.
 - 5. Horizontal Pathways for Communications Cable in Spaces Used for Environmental Air: Plenum-type, communications-cable in hog rings.
 - 6. Horizontal Pathways for Network Cable in Non-Plenum Ceiling Cavities: Cable with "hog rings".

- B. Minimum Pathway Size: 3/4-inch trade size.
- C. Pathway Fittings: Compatible with pathways and suitable for use and location.
 - 1. EMT: Use compression, steel fittings.

3.2 INSTALLATION

- A. Keep pathways at least 6 inches away from parallel runs of flues or hot-water pipes. Install horizontal pathway runs above water piping.
- B. Complete pathway installation before starting conductor installation.
- C. Install no more than the equivalent of two 90-degree bends in any pathway run. Support within 12 inches of changes in direction. Utilize long radius ells for cables.
- D. Support conduit within 12 inches of enclosures to which attached.
- E. Install pathways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- F. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- G. Cut conduit perpendicular to the length.
- H. Surface Pathways:
 - 1. Secure surface pathway with screws or other anchor-type devices at intervals not exceeding 36 inches and with no less than two supports per straight pathway section. Support surface pathway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

3.3 EXISTING DDC CABLING

- A. Existing cabling may or may not be managed in terms of being neatly managed in ceiling cavities. This contract will not require that cabling to be cleaned up.
- B. All new cabling, however, must be neatly supported and managed. It is recommended that new cabling be a different color to avoid confusion between existing unmanaged cabling and new managed cabling.

END OF SECTION 27 0528

1.1 RELATED DOCUMENTS

A. Drawings and Bidding and Contract Provisions, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Nework cabling to all DDC controls and controls and controllers and to building Ethernet.
- 2. Cable connecting hardware, patch panels, and cross-connects.
- 3. Cabling system identification products.
- 4. Cable management system.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. LAN: Local area network.
- C. RCDD: Registered Communications Distribution Designer.

1.4 ADMINISTRATIVE REQUIREMENTS

A. Coordinate layout and installation of cabling with Alpha Controls.

1.5 ACTION SUBMITTALS

A. Shop Drawings:

- 1. Cabling administration drawings and printouts.
- 2. Wiring diagrams to show typical wiring schematics.

1.6 CLOSEOUT SUBMITTALS

A. Software and Firmware Operational Documentation:

- 1. Device address list.
- 2. Printout of software application and graphic screens.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings, Cabling Administration Drawings and field testing program development by an RCDD employed by the Temperature Control Subcontractor.
 - 2. Installation Supervision: Installation shall be under the direct supervision of Registered Technician, who shall be present at all times when Work of this Section is performed at Project site.

PART 2 - PRODUCTS

2.1 CABLING

- A. Control Subcontractor shall consult with Owner's IT Administrator and ensure cable used will be compatible with Owner's network.
- B. Control Subcontractor shall consult with Owner's IT Administrator on method used to interface with Owner's network and facilitate remote access to control system.
- C. All cabling shall be plenum rated.

2.2 HORIZONTAL CABLING DESCRIPTION

- A. Horizontal cable and its connecting hardware provide the means of transporting signals between the telecommunications outlet/connector and the horizontal cross-connect located in the communications equipment room. This cabling and its connecting hardware are called a "permanent link," a term that is used in the testing protocols.
 - 1. TIA/EIA-568-B.1 requires that a minimum of two telecommunications outlet/connectors be installed for each work area.
 - 2. Horizontal cabling shall contain no more than one transition point or consolidation point between the horizontal cross-connect and the telecommunications outlet/connector.
 - 3. Bridged taps and splices shall not be installed in the horizontal cabling.
- B. The maximum allowable horizontal cable length will be determined by the Control Subcontractor.

27 1500 – Communications Horizontal Cabling

2.3 PERFORMANCE REQUIREMENTS

- A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA/EIA-568-B.1 when tested according to test procedures of this standard.
- B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 50 or less.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Grounding: Comply with J-STD-607-A.

2.4 IDENTIFICATION PRODUCTS

A. Comply with TIA/EIA-606-A and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.5 CABLE MANAGEMENT SYSTEM

- A. Description: Computer-based cable management system, with integrated database and graphic capabilities.
- B. Document physical characteristics by recording the network, TIA/EIA details, and connections between equipment and cable.
- C. Information shall be presented in schematic plans.
 - 1. AutoCAD drawing software shall be used as drawing and schematic plans software.
- D. System shall interface with the following testing and recording devices:
 - 1. Direct upload tests from circuit testing instrument into the personal computer.
 - 2. Direct download circuit labeling into labeling printer.

2.6 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing service to evaluate cables.

PART 3 - EXECUTION

3.1 WIRING METHODS

- A. Install cables in pathways except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal pathways and cables except in unfinished spaces.
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 - 2. Comply with requirements in Section 270528 "Pathways for Communications Systems."
- B. Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

3.2 INSTALLATION OF CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Terminate conductors; no cable shall contain unterminated elements.
 - 3. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.

C. Open-Cable Installation:

1. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

D. Separation from EMI Sources:

- Comply with BICSI TDMM and TIA-569-B for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
- 2. Separation between open communications cables in raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches.
- 3. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.

4. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.3 FIRESTOPPING

A. Comply with requirements in Section 078413 "Penetration Firestopping.

3.4 GROUNDING

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

5

END OF SECTION 27 1500